Question 1 §
−i=e23π
−21−2i=(−21)2+(−21)2⋅eitan−1(1)=21⋅ei45π
−3+i=(−3)2+(1)2⋅eitan−1(−31)=2ei65π
3−3i=(3)2+(−3)2⋅eitan−1(3−3)=23⋅ei611π
−31−i=(−31)2+(−1)2⋅eitan−1(−31−1)=34ei34π
Question 2 §
Plot these on the Argand diagram at home, using my drawing tablet
z3=−i⟹arg(z)=3arg(−i)+2kπ=323π+2kπ=6(3+4k)π
∴z=ei63π,ei67π,ei611π
z3=8⟹arg(z)=3arg(8)+2kπ=32kπ
∴z=1,ei32π,ei34π
z2=i⟹arg(z)=2arg(i)+2kπ=22π+2kπ=4(1+4k)π
∴z=ei4π,z=ei45π
z4=82(1−i)⟹arg(z)=4arg(82(1−i))+2kπ=447π+2kπ=16(7+8k)π
∴z=ei167π,ei1615π,ei1623π,ei1631π
Question 3 §
(cosθ+isinθ)3=cos3θ+isin3θ
⟹LHS=cos3θ+icos2θsinθ−cosθsin2θ−isin3θ,RHS=cos3θ+isin3θ
⟹ℜ:cos3θ−cosθsin2θ=cos3θ,ℑ:cos2θsinθ−sin3θ=sin3θ
∴sin3θ=sinθ−2sin3θ, by using sin2θ+cos2θ≡1,
cos3θ=2cos3θ−cosθ, by using sin2θ+cos2θ≡1.
Question 4 §
I’m assuming there’s an error in the question, where an i is missed from the original given equation, given this:
(3−i)10=(2ei611π)10=210⋅ei6110π=210⋅ei3π
⟹a2+b2=210,ba=tan3π=3:z=a+bi
This seems very incorrect - check later
Question 5 §
Given that ω0=1,ω1=ei32π,ω2=ei34π, show that ω3=1 and that 1+ω+ω2=0.
ω3=ω2⋅ω1=ei34π⋅ei32π=ei2π=ei0=e0=1 ■
1+ω+ω2=ei0+ei34π+ei32π
Converting each complex number into the form a+bi gives the following:
ei0:tan0=b1a1,12=a12+b12∴a1=0,b1=±1
ei34π:tan34π=b2a2,12=a22+b22∴a1=±23,b2=±21
ei32π:tan32π=b3a3,12=a32+b32∴a3=