Question 1 §
f(x)=3x2+12x⟹f(−x)=3x2+1−2x:odd
f(x)=3x4+43x2⟹f(−x)=3x4+43x2:even
f(x)=1+x3−x5⟹f(−x)=1−x3+x5:neither
f(x)=ln(2x6−x4+2)⟹f(−x)=ln(2x6−x4+2):even
g(t)=3t2+52t3+t−1⟹f(−x)=3t2+5−2t3−t−1:neither
h(x)=cx2+dax3+bx⟹f(−x)=cx2+d−ax3−bx:odd
Question 2 §
Prove cosh2x−sinh2x=1:
cosh2x−sinh2x=1:LHS=(2ex+e−x)2−(2ex−e−x)2,RHS=1
⟹LHS=4e2x+2+e−2x−4e2x−2+e−2x
⟹LHS=44,RHS=1∴LHS=RHS ■
Hence, prove that sech2x=1−tanh2x and cosech2x=coth2x−1:
cosh2xcosh2x−cosh2xsinh2x=cosh2x1
⟹1−tanh2x=sech2x ■
sinh2xcosh2x−sinh2xsinh2x=sinh2x1
⟹coth2x−1=cosech2x ■
Question 3 §
i2=−1
i3=−i
i4=1
i5=i
i100=1
i505=i
i−1=i1=−i
i−7=−i1=i
Question 4 §
z1=−2+i,z2=1−3i, such that:
ℜ(z1)=−2
ℑ(z1)=1
ℜ(z2)=1
ℑ(z2)=−3
∣z1∣=(−2)2+(1)2=5
∣z2∣=(1)2+(−3)2=10
∠(z1)=−tan−1(21)
∠(z2)=−tan−1(3)=−4π
Question 5 §
z1=3−2i,z2=1+4i, such that
z1+z2=4+2i
z1−z2=2−6i
z1z2=11+10i
z2z1=−175+14i=−175−1714i
z1z2=13−5+14i=−135+1314i
z1ˉz2ˉ=(3+2i)(1−4i)=11−10i
Question 6 §
1+i:(r,θ)=(2,4π)
−1+i:(r,θ)=(2,43π)
−1−i:(r,θ)=(2,45π)
3+i:(r,θ)=(2,6π)
3−i:(r,θ)=(2,611π)
−3−i:(r,θ)=(2,34π)
Question 7 §
i(2−3i)1+i+i2=3i−2i(1+i)+2i(2−3i)=3i−25i+5
⟹3i−25i+5=1325i−5=−135+1325i
3+2i1+2−i1=6541+653i
Question 8 §
Show that the product of two odd functions, f(x) and g(x), is always an even function.
Let f(x),g(x) be such that f(−x)=−f(x),g(−x)=−g(x).
Thus, if we take the product of the two functions: h(x)=f(x)g(x), prove that h(−x)=h(x).
h(−x)=f(−x)⋅g(−x)=−f(x)⋅−g(x)=f(x)⋅g(x)=h(x)
∴h(−x)=h(x) ■