Computer Algebra with Maple – exercises

Version February 5, 2024

- Finish all the exercises. If you can't complete them in-class, finish them out-of-class.
- Do everything within a MAPLE document file (which has extension .mw).
- Store all exercises in your logbook. The MAPLE document file can be used for this.
- Make regular backups on at least *two* different locations (e.g., OneDrive and email). Note: using a USB stick is not advisable because they can suffer from data corruption. This can happen when you don't do 'eject', but also for other reasons.

Table of Contents (clickable)

	Exercises session 1				
	1.1	Tutorials	1		
2	Exe	ercises session 2	2		
	2.1	Tutorials	2		
	2.2	Calculator	2		
	2.3	Calculus	2		

Some of the exercises are based on or from the book *Maple by Example* by Martha L. Abell and James B. Braselton (third edition).

1 Exercises session 1

Note: include all exercises, also the *tutorials*, in your logbook. Do this for this and the subsequent sessions.

1.1 Tutorials

- 1. Open the *Getting Started* (re-open Maple if it is not present any more), then complete the *Tutorial: Talking to Maple* tutorial (first one) and complete this, using a separate blank Maple document. Store that document, once finished, on your OneDrive. So you need to reproduce the right column (indicated by 'Results') in a separate Maple document.
- 2. Open the *Getting Started* (re-open Maple if it is not present any more), then complete the *Tutorial: Putting Ideas Together* tutorial (second one) and complete this, using a separate blank Maple document.

2 Exercises session 2

2.1 Tutorials

- 1. Open the *Getting Started* (re-pen MAPLE if it is not present any more), then complete the *Tutorial: Commands and Packages* tutorial (third one) and complete this, using a separate blank MAPLE document.
- 2. Open the *Getting Started* (re-open Maple if it is not present any more), then complete the *Tutorial: Plotting* tutorial (fourth one) and complete this, using a separate blank Maple document.

2.2 Calculator

Do everything within a MAPLE document file (which has extension .mw). This can be used for your logbook.

- 1. (a) Calculate 13×12 .
 - (b) Calculate $\cos(\pi/2)$. Verify that this is what you would expect.
- 2. Calculate n! for
 - (a) n = 3
 - (b) n = 100
 - (c) n = 200
- 3. Calculate and/or simplify
 - (a) (1+i)(1-i)
 - (b) |2+4i|
 - (c) i^i
 - (d) \sqrt{i}

2.3 Calculus

1. Determine the following single or higher order derivatives

(a)
$$f'(x)$$
 with
$$f(x) = 8\cos(3x)$$
 (b)
$$f''(x)$$
 (d)
$$\frac{\mathrm{d}^3 f(x)}{\mathrm{d}x^3}$$
 with
$$f(x) = \cos(x^n) + x^4$$
 (e)
$$f''(x)$$
 (function of the equation of the equation

2. Determine the following integrals

(a)
$$\int x^2 \sin(x) dx$$

$$\int_{-\infty}^{\pi} \exp(y) \sin(y) dy$$
 (b)
$$\int_{0}^{x} t^2 \sin(t) dt$$

$$\int_{0}^{\pi} \int_{1}^{3} x^2 \sin(y) dx dy$$

3. Which of the following integrals can be solved by MAPLE analytically (i.e., it will return a function) and which other ones numerically? Give the answers if it can be solved either way.

(a)
$$\int \exp(\cos(x)) dx$$
 (d)
$$\int_0^{2\pi} \exp(\cos(x)) dx$$
 (e)
$$\int \exp(a\cos(bx)) dx$$
 (f)
$$\int_0^{2\pi} \exp(a\cos(bx)) dx$$
 (f)
$$\int_0^{2\pi} \exp(a\cos(bx)) dx$$

4. Determine the following sums with MAPLE

(a)
$$\sum_{k=1}^{10} a$$
 (b)
$$\sum_{k=1}^{\infty} n^{-2}$$
 (b)
$$\sum_{k=1}^{10} k^{2}$$
 (f)
$$\sum_{n=0}^{\infty} x^{n}$$
 (c)
$$\sum_{k=1}^{\infty} k^{3}$$
 (g)
$$\sum_{n=1}^{\infty} \frac{1}{n!} x^{n}$$

5. Determine the following limits with MAPLE

(a) (c)
$$\lim_{x \to 0} \frac{\sin(8x)}{2x} \qquad \lim_{x \to \infty} \frac{x - 8x^4}{7x^4 + 5x^3 + 2000x^2 - 6}$$
 (b)
$$\lim_{x \to \infty} x \exp(-x) \qquad \lim_{x \to \infty} \frac{\sqrt{16x^4 + 8} + 3x}{2x^2 + 6x + 1}$$

(e)
$$\lim_{x\to 0}\frac{\cos(ax)-1}{bx^2}$$
 (g)
$$\lim_{x\to 0^+}\frac{\pi x}{|x|}$$
 (f)
$$\lim_{x\to 0}\frac{\exp(x)-1}{|x|}$$
 (h)
$$\lim_{x\to 0^-}\frac{x}{c|x|}$$

Verify the limits graphically by plotting the expression around the limit value (substitute numerical values for variables if needed).