
Ideas of mathematical proof

Slides Week 24

Properties of logical operations. Links with set theory.
Tautology and contradiction. Proofs by contradiction.

Predicate calculus. Quantifiers.
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Connectives for two statements P and Q:

conjunction P ∧Q true when both P and Q are true;

disjunction P ∨Q true when P or Q is true, or both.

implication P ⇒ Q is defined by the following truth
table:

P Q P ⇒ Q
T T T
T F F
F T T
F F T

The implication P ⇒ Q is not true only if P is true
while Q is false.
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Understanding implication

Note that P ⇒ Q is true if P is false

whatever the value of Q:

“anything follows from a wrong statement”.

This agrees with natural language:

“If condition A holds, then I will do B”.

When condition A is false (does not hold),

and I do not do B, my statement is still true:

I keep my promise.
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Example
Let P(x) be “x > 3”, and Q(x) be “x > 1”.

Surely, the implication P(x)⇒ Q(x) is always true!

For x = 4 we have both P and Q true.

For x = 2: P is false and Q is true.

For x = 0: P(x) is false and Q(x) is false.

Main thing: there are no x such that P(x) is true but
Q(x) is false.
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Necessary and sufficient conditions

Definition
In a theorem P ⇒ Q,

P is a sufficient condition for Q.

Or: Q holds if P holds.

Definition
In a theorem P ⇒ Q,

Q is a necessary condition for P .

Or: P holds only if Q holds.
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Implication as a disjunction

Proposition
The statement P ⇒ Q

is logically equivalent to ¬P ∨ Q;

in other words: (P ⇒ Q) ≡ (¬P ∨ Q).

Proof. By truth table:

for all possible input values of P and Q,

check that the corresponding columns are the same.
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Proof by truth table

P Q P ⇒ Q ¬P ¬P ∨ Q
T T
T F
F T
F F
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Proof by truth table

P Q P ⇒ Q ¬P ¬P ∨ Q
T T T
T F F
F T T
F F T
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Proof by truth table

P Q P ⇒ Q ¬P ¬P ∨ Q
T T T F
T F F F
F T T T
F F T T

Slides Week 24 (Properties of logical operations. Links with set theory. Tautology and contradiction. Proofs by contradiction. Predicate calculus. Quantifiers.)Ideas of mathematical proof 9 / 96



Proof by truth table

P Q P ⇒ Q ¬P ¬P ∨ Q
T T T F T
T F F F F
F T T T T
F F T T T
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Proof by truth table

P Q P ⇒ Q ¬P ¬P ∨ Q
T T T F T
T F F F F
F T T T T
F F T T T

We see the columns are the same,

hence, (P ⇒ Q) ≡ (¬P ∨ Q). �
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Converse
Definition
The converse of a statement P ⇒ Q

is defined to be the statement Q ⇒ P .

Example
Let P(x) be “x > 3”, and let Q(x) be “x > 1”.

P(x)⇒ Q(x) is always true.

But Q(x)⇒ P(x) is not always true:

for x = 2, Q(x) is true but P(x) is false.

(Note: one counterexample is enough.)
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Converse of Pythagoras Theorem
Example
Pythagoras Theorem: P ⇒ Q,

where for a triangle ABC ,

P is “∠ACB = 90◦” and Q is “AC 2 + BC 2 = AB2”.

The converse is Q ⇒ P , which is, in fact, also true:

if AC 2 + BC 2 = AB2, then ∠ACB = 90◦.

Even if we prove the Pythagoras theorem itself,
the converse theorem still must be proved,
it is not the same theorem,
in many other cases the converse may not be true.
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If and only if

Definition
We write P ⇔ Q to abbreviate (P ⇒ Q) ∧ (Q ⇒ P).

The truth table is:

P Q P ⇒ Q Q ⇒ P (P ⇒ Q) ∧ (Q ⇒ P)
T T T T T
T F F T F
F T T F F
F F T T T
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Necessary and sufficient condition

So P ⇔ Q is true exactly when

the values of P and Q are the same,

either both true, or both false.

In a theorem P ⇔ Q,

“P is a necessary and sufficient condition for Q

(and vice versa)”.

The same as “P holds if and only if Q holds”.
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Example
The statement (¬P)⇔ (¬Q)

is logically equivalent to P ⇔ Q.

By the truth table (using truth values for ⇔ as known):

P Q P ⇔ Q ¬P ¬Q ¬P ⇔ ¬Q
T T T F F T
T F F F T F
F T F T F F
F F T T T T

Truth values are the same, so ¬P ⇔ ¬Q is logically
equivalent to P ⇔ Q.
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Example
The statement (P ⇒ Q) ∧ (¬P ⇒ ¬Q)

is logically equivalent to P ⇔ Q.

Proof by the truth table:

P Q P ⇒ Q ¬P ¬Q ¬P ⇒ ¬Q (P ⇒ Q) ∧ (¬P ⇒ ¬Q)
T T T F F T T
T F F F T T F
F T T T F F F
F F T T T T T

Truth values are the same, so (P ⇒ Q) ∧ (¬P ⇒ ¬Q)
is logically equivalent to P ⇔ Q. �
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Links from sets to logical statements

Recall:

Conjunction = (logical and) denoted by P ∧ Q.

Disjunction (logical inclusive or) denoted by P ∨ Q.

Negation (logical not) denoted by ¬P .

Inmplication (logical implies) denoted by P ⇒ Q.

Slides Week 24 (Properties of logical operations. Links with set theory. Tautology and contradiction. Proofs by contradiction. Predicate calculus. Quantifiers.)Ideas of mathematical proof 18 / 96



Links with set theory: union

Let A and B be sets.

Let P = the statement “x ∈ A”, and Q = “x ∈ B”.

Clearly, then P ∨ Q means exactly x ∈ A or x ∈ B ,

that is, x ∈ A ∪ B by definition of union.
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Links with set theory: intersection

Recall: A and B are sets, and

P = the statement “x ∈ A”, and Q = “x ∈ B”.

P ∧ Q means x ∈ A and x ∈ B ,

that is, x ∈ A ∩ B by definition of intersection.
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Links with set theory: complement

Recall: A is a set, and

P = the statement “x ∈ A”.

x ∈ A means x 6∈ A,

that is, x ∈ A false, that is, ¬P is true.
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Links with set theory: inclusion

Recall: A and B are sets, and

P = the statement “x ∈ A”, and Q = “x ∈ B”.

A ⊆ B means that x ∈ A⇒ x ∈ B ,

that is, P ⇒ Q.
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Links with set theory: mnemonic rule

Thus, we have a ‘correspondence’:

←→ ¬

∨ ←→ ∪

∧ ←→ ∩

⇒ ←→ ⊆
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From logic to sets
Conversely, let P(x) and Q(x) be statements

depending on some variable x ∈ U .

Define the sets A = {x ∈ U | P(x) is true}
and B = {x ∈ U | Q(x) is true}.

Then the same correspondence holds:

A ∩ B = {x ∈ U | P(x) ∧ Q(x) is true};

A ∪ B = {x ∈ U | P(x) ∨ Q(x) is true};

A = {x ∈ U | ¬P(x) is true}.
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Properties of logical operations
These are similar to the properties of operations on sets,
having in mind the ‘correspondence’

←→ ¬ ; ∨ ←→ ∪ ; ∧ ←→ ∩.

Namely, let P ,Q,R be arbitrary statements.
Then the following hold:

1. Associativity:

(P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R) and

(P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R).

2. Commutativity:

P ∨ Q ≡ Q ∨ P and P ∧ Q ≡ Q ∧ P .
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3. Distributivity:

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R) and

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R).

4. De Morgan Laws:

¬(P ∧ Q) ≡ ¬P ∨ ¬Q and

¬(P ∨ Q) ≡ ¬P ∧ ¬Q.

5. Double negation:

¬(¬P) ≡ P .
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Proofs of laws by truth tables

All these logical equivalences can be easily proved by
truth tables.

We have already proved one of the de Morgan laws in an
example above.

Example
Prove (one of) the distributivity laws:

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R).

Fill the truth table giving all 8 possible combinations of
inputs for P ,Q,R :
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T T
T T F T
T F T T
T F F F
F T T T
F T F T
F F T T
F F F F
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T T T T
T T F T T T
T F T T T F
T F F F F F
F T T T F F
F T F T F F
F F T T F F
F F F F F F
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T T T T T
T T F T T T F
T F T T T F T
T F F F F F F
F T T T F F F
F T F T F F F
F F T T F F F
F F F F F F F
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F
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P Q R Q ∨ R P ∧ (Q ∨ R) P ∧ Q P ∧ R (P ∧ Q) ∨ (P ∧ R)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

We see that the columns for P ∧ (Q ∨ R) and
(P ∧ Q) ∨ (P ∧ R) are the same, as required,

so P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R). �
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Tautology statements
Definition
A compound logical statement is a tautology
if its truth value is TRUE for any input values of
constituents.

Example
P ∨ ¬P is clearly always true, no matter what the value
of P is: P is true ⇒ disjunction true,
or P is false and then ¬P is true ⇒ disjunction true.

By truth table: P ¬P P ∨ ¬P
T F T
F T T

Only T in that column — so is a tautology.
Slides Week 24 (Properties of logical operations. Links with set theory. Tautology and contradiction. Proofs by contradiction. Predicate calculus. Quantifiers.)Ideas of mathematical proof 35 / 96



Example
Prove that (P ∧ Q)⇒ (P ∨ Q) is a tautology.

Proof by truth table:

P Q P ∧ Q P ∨ Q (P ∧ Q)⇒ (P ∨ Q)
T T
T F
F T
F F
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Example
Prove that (P ∧ Q)⇒ (P ∨ Q) is a tautology.

Proof by truth table:

P Q P ∧ Q P ∨ Q (P ∧ Q)⇒ (P ∨ Q)
T T T
T F F
F T F
F F F
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Example
Prove that (P ∧ Q)⇒ (P ∨ Q) is a tautology.

Proof by truth table:

P Q P ∧ Q P ∨ Q (P ∧ Q)⇒ (P ∨ Q)
T T T T
T F F T
F T F T
F F F F
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Example
Prove that (P ∧ Q)⇒ (P ∨ Q) is a tautology.

Proof by truth table:

P Q P ∧ Q P ∨ Q (P ∧ Q)⇒ (P ∨ Q)
T T T T T
T F F T T
F T F T T
F F F F T

Last column has T only, so this is a tautology. �
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Tautology properties
Notation
Any tautology is denoted by T .

Properties
T ∧ P ≡ P for any statement P ;

T ∨ P ≡ T for any statement P .

Proof. By truth table:

P T T ∧ P T ∨ P
T T
F T
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Tautology properties
Notation
Any tautology is denoted by T .

Properties
T ∧ P ≡ P for any statement P ;

T ∨ P ≡ T for any statement P .

Proof. By truth table:

P T T ∧ P T ∨ P
T T T
F T F
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Tautology properties
Notation
Any tautology is denoted by T .

Properties
T ∧ P ≡ P for any statement P ;

T ∨ P ≡ T for any statement P .

Proof. By truth table:

P T T ∧ P T ∨ P
T T T T
F T F T

We see that the columns are as required. �
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Contradiction statements
Definition
A compound statement that is always false,

for all input data, is called a contradiction.

Any such statement is denoted by F .

Example
2 = 5 is a contradiction, has truth value F .

Example
(a > 5) ∧ (a2 < 9) is a contradiction, ≡ F .
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Example
P ∧ ¬P ≡ F for any statement P :

P ¬P P ∧ ¬P
T F F
F T F

This is a typical situation how contradiction appears

in proofs by contradiction, as we shall see later.
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Example
Prove that (P ⇒ ¬Q) ∧ (P ∧ Q) ≡ F

for any statements P , Q.

P Q ¬Q P ⇒ ¬Q P ∧ Q (P ⇒ ¬Q) ∧ (P ∧ Q)
T T
T F
F T
F F
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Example
Prove that (P ⇒ ¬Q) ∧ (P ∧ Q) ≡ F

for any statements P , Q.

P Q ¬Q P ⇒ ¬Q P ∧ Q (P ⇒ ¬Q) ∧ (P ∧ Q)
T T F
T F T
F T F
F F T
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Example
Prove that (P ⇒ ¬Q) ∧ (P ∧ Q) ≡ F

for any statements P , Q.

P Q ¬Q P ⇒ ¬Q P ∧ Q (P ⇒ ¬Q) ∧ (P ∧ Q)
T T F F
T F T T
F T F T
F F T T

Slides Week 24 (Properties of logical operations. Links with set theory. Tautology and contradiction. Proofs by contradiction. Predicate calculus. Quantifiers.)Ideas of mathematical proof 47 / 96



Example
Prove that (P ⇒ ¬Q) ∧ (P ∧ Q) ≡ F

for any statements P , Q.

P Q ¬Q P ⇒ ¬Q P ∧ Q (P ⇒ ¬Q) ∧ (P ∧ Q)
T T F F T
T F T T F
F T F T F
F F T T F
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Example
Prove that (P ⇒ ¬Q) ∧ (P ∧ Q) ≡ F

for any statements P , Q.

P Q ¬Q P ⇒ ¬Q P ∧ Q (P ⇒ ¬Q) ∧ (P ∧ Q)
T T F F T F
T F T T F F
F T F T F F
F F T T F F

We see that the last column (for our statement) contains
only F , so this is a contradiction. �
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Remark. Note that F ⇒ P is a tautology for any P :

F P F ⇒ P
F T T
F F T

“Anything follows from a wrong statement”
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Contradiction properties

Properties
1. F ∧ P ≡ F for any statement P ;

2. F ∨ P ≡ P for any statement P ;

3. ¬T ≡ F ;

4. ¬F ≡ T .

Proof: By truth table:

T F P F ∧ P F ∨ P ¬T ¬F
T F T
T F F
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Contradiction properties

Properties
1. F ∧ P ≡ F for any statement P ;

2. F ∨ P ≡ P for any statement P ;

3. ¬T ≡ F ;

4. ¬F ≡ T .

Proof: By truth table:

T F P F ∧ P F ∨ P ¬T ¬F
T F T F
T F F F
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Contradiction properties

Properties
1. F ∧ P ≡ F for any statement P ;

2. F ∨ P ≡ P for any statement P ;

3. ¬T ≡ F ;

4. ¬F ≡ T .

Proof: By truth table:

T F P F ∧ P F ∨ P ¬T ¬F
T F T F T
T F F F F
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Contradiction properties

Properties
1. F ∧ P ≡ F for any statement P ;

2. F ∨ P ≡ P for any statement P ;

3. ¬T ≡ F ;

4. ¬F ≡ T .

Proof: By truth table:

T F P F ∧ P F ∨ P ¬T ¬F
T F T F T F
T F F F F F
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Contradiction properties

Properties
1. F ∧ P ≡ F for any statement P ;

2. F ∨ P ≡ P for any statement P ;

3. ¬T ≡ F ;

4. ¬F ≡ T .

Proof: By truth table:

T F P F ∧ P F ∨ P ¬T ¬F
T F T F T F T
T F F F F F T

We see that columns are as required. �
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Remark. In the analogy with sets:

←→ ¬ ; ∪ ←→ ∨ ; ∩ ←→ ∧

we can now add

U ←→ T ; ∅ ←→ F .
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Simplifying logical expressions by using the
properties.

This type of tasks are similar to those for expressions
with sets.
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Recap of the properties

Let P , Q, R be arbitrary statements. Then the
following hold:

1. Associativity:

(P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R) and

(P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R).

2. Commutativity:

P ∨ Q ≡ Q ∨ P and P ∧ Q ≡ Q ∧ P .
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3. Distributivity:

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R) and

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R).

4. De Morgan Laws:

¬(P ∧ Q) ≡ ¬P ∨ ¬Q and

¬(P ∨ Q) ≡ ¬P ∧ ¬Q.

5. Double negation:

¬(¬P) ≡ P .
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6. Tautology and contradiction laws:

P ∨ ¬P ≡ T and P ∧ ¬P ≡ F
for any statement P ;

T ∧ P ≡ P and T ∨ P ≡ T
for any statement P ;

F ∧ P ≡ F and F ∨ P ≡ P
for any statement P ;

¬T ≡ F and ¬F ≡ T .
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7. Implication law:

P ⇒ Q ≡ ¬P ∨ Q.

8. Absorption laws:

P ∨ (P ∧ Q) ≡ P ;

P ∧ (P ∨ Q) ≡ P .

9. Idempotent laws:

P ∨ P ≡ P ;

P ∧ P ≡ P .
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Example
Simplify:

¬((P ∨ ¬Q) ∧ Q) ≡ ¬(P ∨ ¬Q) ∨ ¬Q de Morgan

≡ (¬P ∧ ¬¬Q) ∨ ¬Q de Morgan

≡ (¬P ∧ Q) ∨ ¬Q double negation

≡ (¬P ∨ ¬Q) ∧ (Q ∨ ¬Q) distributivity

≡ (¬P ∨ ¬Q) ∧ T tautology law

≡ ¬P ∨ ¬Q tautology law
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Example
Simplify:

P ∧ ((P ∧ Q) ∨ ¬P) ≡ (P ∧ P ∧ Q) ∨ (P ∧ ¬P) distrib.

≡ (P ∧ Q) ∨ (P ∧ ¬P) idempotent

≡ (P ∧ Q) ∨ F contradiction law

≡ P ∧ Q contradiction law
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Proofs by contradiction
Proofs by contradiction are based on

Theorem
We have the logical equivalence (¬P ⇒ F ) ≡ P.

Proof: By truth table:

P F ¬P ¬P ⇒ F
T F F T
F F T F

last column is the same as for P , as required. �

This means: P is true exactly when ¬P ⇒ F is true.
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Proofs by contradiction

Hence, we have the following rule.

Proof by contradiction
To prove a statement P is the same

as to prove that ¬P ⇒ F ,

i. e. that the negation causes (=implies, leads to)

a contradiction.

(Does not mean one has to always use proof by
contradiction...)
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Example
Suppose that k is an integer such that k2 is even.
Prove that k is even. (Let P = “k is even”.)

Proof. We “argue by contradiction”:
suppose ¬P : that is, k is not even,
that is, k = 2m + 1 for an integer m.

Then k2 = (2m + 1)2 = 4m2 + 4m + 1
= 2 · (2m2 + 2m) + 1, which is odd.

This is a contradiction: we know that k2 is even,
and at the same time obtained that k2 is odd.

This contradiction shows that our assumption
(that k is not even) must be false, that is, k is even,
as required. �
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Again: the scheme was: P meant “k is even”.

We assumed ¬P : “k is odd”.

Then we obtained a contradiction: · · · ⇒ Q ∧ ¬Q ≡ F ,

where Q means “k2 is even” (as given beforehand)

and ¬Q = “k2 is odd”.

So we have ¬P ⇒ F is true, which means P is true.
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Example

Prove that
√

2 is irrational, i. e.,
√

2 6∈ Q.

Proof by contradiction:
Suppose the negation (“the opposite”), that is,

√
2 ∈ Q,

that is,
√

2 = m/n for m, n ∈ Z.
We can choose a reduced fraction, so we assume
that m/n is a reduced fraction, g.c.d.(m, n) = 1.

Square: 2 = m2/n2; 2n2 = m2 is even.
Then by preceding example, m is even: m = 2k .

Substitute: 2n2 = (2k)2 = 4k2; n2 = 2k2 is even.
Hence by preceding example, n is also even.

Thus, both m and n are even
– a contradiction with the fact that g.c.d.(m, n) = 1.
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Thus,
√

2 ∈ Q (negation) ⇒ contradiction,

so the assertion
√

2 6∈ Q is true.

Or simply:

“...this contradiction proves the assertion.” �
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Predicate calculus

Definition
A predicate is a (possibly compound) logical expression

P(x) depending on a variable x

from some universal set x ∈ U

called universe of discourse.

When we substitute a particular value for x ,

the predicate becomes a statement,

which is either true or false.
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Examples of predicates
Predicates are not statements!
become statements for values of variables substituted
(or with quantifiers – later).

Example
Let P(x) be x > 2, with U = R.

Then P(3) is true, while P(1) is false.

Example
Let P(x) be “x is divisible by 3” and U = Z.

Then P(12) is true, P(17) is false,

and P(3.5) makes no sense (since 3.5 6∈ U ).
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Examples of predicates

Example
Let P(x) be x > 5 and Q(x) be x2 > 9.

Consider the compound predicate R(x) = P(x) ∧ Q(x).

Then R(6) is true,

since both P(6) and Q(6) are true,

but R(−4) is false:

P(−4) is false and Q(−4) is true,

conjunction is then false.
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Examples of predicates
Example
Let P(x) be x > 4 and Q(x) be x2 > 16.

Then P(x)⇒ Q(x) is always true, for all x .

Indeed, if x > 4, then x2 > 16.

E.g. x = 6: P(x) true and Q(x) true.

For x = 1: P(x) false and Q(x) false.

For x = −5: P(x) false and Q(x) true.

(Note that when P(x) is false,

the implication P(x)⇒ Q(x) is true regardless of Q(x).)
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Predicates in several variables
Example
Let P(x , y) be x2 + y 2 = 1, with U = R.

Then P(1, 0) is true, while P(1, 1) is false.

Example
Let P(x , y) be x > y and Q(x) be x < 2.

Find truth value of ¬(P(x , y) ∧ Q(x)) for x = 3, y = 1.

Easy by truth table:

P(3, 1) Q(3) P(3, 1) ∧ Q(3) ¬(P(3, 1) ∧ Q(3))
T F F T
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Quantifiers

Universal quantifier.

Many statements in maths begin with

“For all x ...”,

or “For every x ...”,

or “For any x ...”,

or “For each x ...”, etc., ...... (something holds true).

(which all mean the same).
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Universal quantifier

Definition
Given a predicate with one variable P(x) for x ∈ U ,

a statement ∀x P(x) is formed: by definition,

∀x P(x) is true if P(a) is true for all a ∈ U .

The symbol ∀ is called the universal quantifier.

So ∀x P(x) is false if it is not true for some a ∈ U ,

that is, false if there is at least one a ∈ U

such that P(a) is false.
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Dependence on universe
Example
Let P(x) be (x + 1)2 > x2, and U = R.

Then ∀x P(x) is false: for example, P(−1) is false.

Different universe:

Example
Let P(x) be (x + 1)2 > x2 and U = N.

Then ∀x P(x) is true:

since (a + 1)2 = a2 + 2a + 1 > a2

for any positive integer a.
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Universal quantifier for several variables

Similar definitions for predicates with many variables:

universal quantifiers can turn them into statements.

∀x ∀y R(x , y) is true if ∀y R(x , y) is true for all x ,

which, for given x = x0, is true

if R(x0, y) is true for all y .

Clearly, this is the same as:

Definition
∀x ∀y R(x , y) is true if R(x , y) is true for all x , y .
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Example
Let P(x , y) be x2 = y 2

and Q(x , y) be x + y = 0, with x , y ∈ U = R.

Prove that ∀x ∀y (Q(x , y)⇒ P(x , y)) is true.

Indeed, whenever a + b = 0, we have a = −b,

whence a2 = b2.

Example
Is ∀x ∀y (P(x , y)⇒ Q(x , y)) true?

This is false: e.g. x = 1, y = 1.
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Note that the universe of discourse can be defined

differently for x , y .

In other words, it can be defined as

‘universe of pairs’ (x , y) involved in P(x , y).

Example
Let the universe of discourse be C× N,

Consider ∀x ∀y (|x + y | ≤ |x |+ y).

True or false? True (special case of triangle inequality).
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Existential quantifier
Definition
Given a predicate with one variable P(x) for x ∈ U ,

a statement ∃x P(x) is formed: by definition,

∃x P(x) is true if P(a) is true for some a ∈ U .

In other words,

∃x P(x) is true if there exists (at least one) a ∈ U

such that P(a) is true.

So it is false if there are no such a ∈ U .

The symbol ∃ is called the existential quantifier.
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Existence statements

∃x corresponds to: “There is x ..”, or “There exists x ..”

usually followed by “such that...’ (something holds);

Or simply “For some x . . . ” (something holds).

Example
Let P(x) be (x − 1)2 > x2, and U = R.

Then ∃x P(x) is true: for example, P(0) is true.
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Dependence on universe
Choice of the universe of discourse U is important.

Example
Let P(x) be x2 = 2 with U = R.

Then ∃x P(x) is true: e.g. (
√

2)2 = 2.

The same statement with a different universe:

Example
Let P(x) be x2 = 2 with U = Q.

Then ∃x P(x) is false,

as there is no rational square root of 2, as we know.
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Existence with several variables
Definition
∃x ∃y P(x , y) is true if there exist a, b ∈ U

such that P(a, b) is true.

Example
Let U = R. Then ∃x ∃y ((x2 > y 2) ∧ (x < y))

is true: e.g. x = −2, y = 1.

Example
Let U = R. Then ∃x ∃y ((x > 2y 2) ∧ (x < 0))

is false: no such pairs x , y .
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Mixing different quantifiers
For predicates with many variables, universal and
existential quantifiers can be mixed, to make them into
statements.

Each quantifier always comes with a variable to which it
refers.

The order in which they are placed is important.

Notation.
When a quantifier ∀x or ∃x is placed before a
formula, it is applied to the whole formula on the right.

Extra brackets are not used: e.g. ∀x(∃y P(x , y)) is
written simply as ∀x ∃y P(x , y).
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Brackets with quantifiers
If we want a quantifier to be applied to a part of the
formula, then brackets are used:

e.g. (∀x P(x))⇒ ∃xQ(x) means that

if P(x) is true for all x ,

then Q(x) is true for some x .

Without brackets ∀x P(x)⇒ Q(x) the meaning is
different: P(x) implies Q(x) for all x .

...But no harm in using brackets to avoid ambiguity:
∀x (P(x)⇒ Q(x)).
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Example
Let P(x , y) mean “x likes y”

with x in the set of students of UoL,

and y in the set of songs by Beatles.

Then ∀x ∃y P(x , y)

means that every student likes some (at least one) song
(may be different for different students).

For different order the meaning is quite different:

∃y ∀x P(x , y) means that

there is a song that is liked by all students.
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As we already did, predicates given by formulae are often
used without names (like P(x , y)).

Example
Let U = R. Then ∃x ∀y (x 6= y)

is false: for any x take y = x ;

Example
Let U = R. Then ∀x ∃y (x 6= y)

is true: for any x take y = x + 1.
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Equivalence of statements with quantifiers

Recall: two statements are logically equivalent

if they have the same truth values for all inputs.

The same for statements with quantifiers.
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Negation and quantifiers
Two additional basic rules:

Theorem (Negation for quantified statements)
For any predicate P(x),

(a) ¬(∀x P(x)) ≡ ∃x ¬P(x);

(b) ¬(∃x P(x)) ≡ ∀x ¬P(x).

(Mnemonic rule: “transfer/carry negation sign

from left to right over quantifiers changing ∀ ↔ ∃
until landing on unquantified statement”.)
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Proofs for negation with quantifiers
...follow directly from the definition of truth values for
quantified statements.

Proof of ¬(∀x P(x)) ≡ ∃x ¬P(x)

L.H.S. is true when ∀x P(x) is false,

that is, it is false that P(x) is true for all x ,

that is, there is x0 such that P(x0) is false,

that is, ¬P(x0) is true,

that is, there is x0 such that ¬P(x0) is true,

which means R.H.S. is true.

Thus, L.H.S. is true exactly when R.H.S. is true.
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Proofs for negation with quantifiers

Proof of ¬(∃x P(x)) ≡ ∀x ¬P(x).

L.H.S. is true when ∃x P(x) is false,

that is, there is no x such that P(x) is true,

that is, for all x we have P(x) is false,

that is, ¬P(x) is true for all x ,

that is, ∀x ¬P(x) is true,

which means R.H.S. is true.

Thus, L.H.S. is true exactly when R.H.S. is true. �
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Example
We saw that ∃x (x2 = 2) is false for U = Q.

Then the negation must be true:

¬(∃x (x2 = 2)) ≡ ∀x ¬(x2 = 2)

≡ ∀x (x2 6= 2) is true

(That is, x2 6= 2 for any x ∈ Q.)
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Example
Let P(x , y) mean “x likes y”
with x in the set of students of UoL,
and y in the set of songs by Beatles.

∃y ∀x P(x , y) means there is a song that is liked by all
students.

What is the negation? By the above rules we transform:

¬(∃y ∀x P(x , y)) ≡ ∀y ¬(∀x P(x , y))

≡ ∀y ∃x ¬P(x , y).

In words: for every song there is a student who does not
not like this song, precisely the negation: there is no
song that is liked by all students.
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More examples
Example
Let U = R. Then ∀x ∀y (x2 + y 2 = (x + y)2)

is false: e.g. for x = 1, y = 1.

Example
Let U = R. Then ∀x ∃y (x2 + y 2 = (x + y)2)

is true: e.g. for any x choose y = 0.

Example
Let U = R. Then ∃x ∀y (x2 + y 2 = (x + y)2)

is true: e.g. for x = 0.
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Example
Let U = P(R), the set of all subsets of R.

Is
∀X ∀Y ∀Z (X ∩ Y ) ∪ Z = X ∩ (Y ∪ Z )

true or false?

It is false: as usual, just one example is enough
to ruin a ‘universal’ statement:

e.g. take X = ∅, then r.h.s is empty,

and if Z 6= ∅, the l.h.s. is non-empty as it contains Z .

Say, X = ∅, Y = {1}, Z = {1}:
l.h.s. {1} 6= r.h.s. ∅.
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