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Injective mappings

Definition
A mapping f : A→ B is injective (or one-to-one)

if different elements are sent to different:

x1 6= x2 ⇒ f (x1) 6= f (x2)

(the same: f (x1) = f (x2) ⇒ x1 = x2).

Example
f : R→ R, f (x) = x2

is not injective, since, e.g., f (−2) = f (2).

Slides Week 22 (Mappings. Cardinalities.) Ideas of mathematical proof 2 / 69



Example
f : R→ R, f (x) = x3 is injective:
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Horizontal Line Test for functions
For A,B ⊆ R, a mapping f : A→ B is injective

if it satisfies the “Horizontal Line Test”:

every horizontal line has at most one intersection point
with the graph.

injective not injective
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Example

Is f : [−1, 1]→ R, f (x) =
√

1− x2, injective?

fails Horizontal Line Test: not injective.

Without picture: e.g. f (1) = f (−1).
Slides Week 22 (Mappings. Cardinalities.) Ideas of mathematical proof 5 / 69



Example
Let T be the set of triangles and let f : T → R, where
f (t) = area of t.

Then f is not injective, as ∃ different triangles with
equal areas.

Example
Let S = {all circles on the plane centred at (0, 0)} and
let f : S → R, where f (c) = area of c .

This f is injective: for every area there is only one
radius giving this area, and only one circle with centre
(0, 0) with this radius.

Slides Week 22 (Mappings. Cardinalities.) Ideas of mathematical proof 6 / 69



Example
Let A = P({a, b, c}) (all subsets of {a, b, c}),

and let f : A→ A, where f (X ) = X ∩ {a}.

This f is not injective: e.g., f ({a}) = {a} = f ({a, b}).
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Surjective mappings

Definition
A mapping f : A→ B is surjective (or onto)

if f (A) = B .

(∀b ∈ B ∃a ∈ A such that b = f (a).)

Example
f : R→ R, where f (x) = x2

is not surjective, since f (x) ≥ 0 for all x ,

so e.g. −1 6∈ f (A).
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Example
f : R→ R, where f (x) = x3, is surjective.
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Remark: Any mapping f : A→ B , can be
‘made surjective’ by changing the codomain B to f (A),
so the same rule, but for f : A→ f (A).

E.g.: f : R→ {x ∈ R | x ≥ 0}, f (x) = x2

is now surjective.
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Bijective mappings

Definition
A mapping f : A→ B is bijective

(or is a one-to-one correspondence)

if it is both injective and surjective.

Example
f : R→ R with f (x) = x3 is bijective.
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Example
f : R→ R with f (x) = sin x
is neither surjective, nor injective.

Change codomain: f : R→ [−1, 1], f (x) = sin x
is now surjective, but not injective (sin(a + 2π) = sin a).

Change domain: f : [−π/2, π/2]→ [−1, 1],
then f (x) = sin x is now also injective, so a bijection:
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Inverse images
Definition
Given a mapping f : A→ B ,

the full inverse image of an element b ∈ B

is the set f −1(b) = {a ∈ A | f (a) = b}.

Note: f −1 is not a mapping in general.

Example
Let f : R→ R, f (x) = x2.

Then f −1(4) = {−2, 2}.
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Full inverse image as full solution

Example
Let f : R→ R, f (x) = sin x .

Find f −1(0.5).

Solutions of equation f (x) = 0.5, sin x = 0.5

f −1(0.5) = {kπ + (−1)kπ/6 | k ∈ Z}.
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Example
Let A = P({a, b, c}) (all subsets of {a, b, c}),

and let f : A→ A, f (X ) = X ∩ {a}.
Find the full inverses images of all elements of f (A).

The image is f (A) = {∅, {a}}.
Full inverse images:

f −1(∅) = {∅, {b}, {c}, {b, c}}
(all subsets X with X ∩ {a} = ∅, that is, X 63 a).

f −1({a}) = {{a}, {a, b}, {a, c}, {a, b, c}}
(all subsets Y with Y ∩ {a} = {a}, that is, Y 3 a).
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Definition
For f : A→ B

an inverse image (or a pre-image) of b ∈ B

is any a ∈ f −1(b) that is, any a such that f (a) = b.

Only makes sense for b ∈ f (A),

(sometimes they put f −1(b) = ∅ for b 6∈ f (A)).

Example
For f (x) = sin x ,

a pre-image of 0.5 is π/6, and 5π/6, etc.
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Remark: injective means precisely that

|f −1(b)| = 1 for all b ∈ f (A), a unique pre-image.

Example
Let A = P({u, v ,w}) (all subsets of {u, v ,w}),

and let f : A→ {0, 1, 2, 3, 4, 5}, f (X ) = |X |.

What is f −1(2)? Answer: = {{u, v}, {u,w}, {v ,w}}.

In particular, f is not injective.

f −1(0) = {∅}.
f −1(5) undefined (or f −1(5) = ∅).
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Inverse mapping

Definition
Suppose that f : A→ B is a bijection.

Then f −1 : B → A can be regarded as a mapping:

f −1(b) = a such that f (a) = b

is well defined ∀b since such a is unique for a bijection.

Then f −1 is called the inverse mapping of f .

Slides Week 22 (Mappings. Cardinalities.) Ideas of mathematical proof 18 / 69



Diagram for inverse mapping

On the diagram this means reversing those arrows:
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Remark: So-called ‘abuse of notation’:

generally f −1(b) is the set of all pre-images.

Even for a bijection, when f (a) = b,

strictly speaking, f −1(b) = {a}.
But the same notation is used to denote

the inverse mapping (when it exists!): f −1(b) = a.
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Example

Verify that f : R→ R, f (x) =
5x + 3

8
is a bijection and find the inverse mapping.

Injective: if
5x1 + 3

8
=

5x2 + 3

8
, then

5x1 + 3 = 5x2 + 3, 5x1 = 5x2, x1 = x2, as req.

Surjective: for any y ∈ R find x such that f (x) = y ,

5x + 3

8
= y , easily solved: x =

8y − 3

5
.

So, f −1(y) =
8y − 3

5
.
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Example
We know that

f : [−π/2, π/2]→ [−1, 1], f (x) = sin x ,

is a bijection.

Hence it has inverse f −1 : [−1, 1]→ [−π/2, π/2],

denoted by sin−1 or arcsin.
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Example
Show that the mapping

f : [2,∞)→ [−3, 0), f (x) =
3

1− x

is a bijection, and find the inverse mapping.

Injective: if
3

1− x1
=

3

1− x2
,

then 3(1− x2) = 3(1− x1), 1− x2 = 1− x1,

x2 = x1, as req.
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Surjective: for any y ∈ [−3, 0)

need x ∈ [2,∞) such that

f (x) =
3

1− x
= y ; 3 = y(1− x); x = 1− 3

y

also need ≥ 2, check: 1− 3

y
≥ 2, −3

y
≥ 1,

(since y < 0) ⇔ −3 ≤ y , so true for y ∈ [−3, 0).

Inverse mapping: f −1(y) = 1− 3

y
,

f −1 : [−3, 0)→ [2,∞).
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Remark: Non-injective mapping has no inverse:

‘Reversing arrows’ is not a mapping, since pre-image is
not unique.
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Injective but not surjective mapping f : A→ B has no
inverse B → A since elements outside f (A) 6= B have
no pre-images:

But ‘reversing arrows’ makes a mapping
f −1 : f (A)→ A,
which is the inverse of f : A→ f (A).
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Example
Let C = {all circles on the plane centred at (0, 0)}.
Let f : C → R, f (c) = area of c .

Is injective, but not surjective (say, −1 6∈ image).

Becomes bijective for f : C → (0,∞),

since for b > 0 there is a circle centred at (0, 0)

with area b: of radius
√
b/π.

Hence then there is inverse mapping:

f −1 : (0,∞)→ C

f −1(b) = circle of radius
√
b/π centred at (0, 0).
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Proposition
The inverse of a bijection f : A→ B

is a bijection f −1 : B → A.

Proof: f −1 is injective: f −1(b1) = a = f −1(b2)

means b1 = f (a) = b2. But f is a mapping,

so must be well defined: b1 = b2, as required.

f −1 is surjective: for any a ∈ A

we have a = f −1(f (a)), so a ∈ f −1(B).
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Proposition
If f : A→ B is a bijection, then (f −1)−1 = f .

Note: (f −1)−1 exists because f −1 is also a bijection.
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Composite mappings
Definition
Let f : A→ B and g : B → C be mappings

such that the codomain of f is (in) the domain of g ,

then the composite mapping g ◦ f : A→ C

is defined by the rule

(g ◦ f )(a) = g(f (a)) for all a ∈ A.

‘Function of a function’, or ‘chain function’:

Example
y = (sin x)2 is the composite of sin x and x2.
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Image of composite mapping

Yellow is f (A), blue and green g(B),

green is the image of g ◦ f , that is,

(g ◦ f )(A) = g(f (A)).
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Useful notation

g ◦ f : A
f−→ B

g−→ C , (g ◦ f )(x) = g(f (x))
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Example
Let f : R→ R, f (x) = sin x ,

and g : R→ R, g(y) = y 2.

What are f ◦ g and g ◦ f (if exist)?
What are their images?

g ◦ f : R sin x−→ R y2

−→ R. Then (g ◦ f )(x) = (sin x)2.

The image of f is [−1, 1].

The image of g ◦ f = (sin x)2 is [0, 1]
as this is the image of [−1, 1] under g : x → x2.

Different: f ◦ g : R x2−→ R sin y−→ R
(f ◦ g)(x) = sin(x2). Image is [−1, 1]
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Example
Let f : R→ R, f (x) = 2x + 1

and g : [0,∞)→ R, g(x) =
√
x .

Then f ◦ g : [0,∞)→ R is defined: 2
√
x + 1.

But g ◦ f is not defined: f (R) = R 6⊆ domain of g .

Changing domain may help: f1 : [−0.5,∞)→ R,

f1(x) = 2x + 1; image of f1 is [0,∞);

then g ◦ f1 is defined: g ◦ f1 : [−0.5,∞)→ R,

(g ◦ f1)(x) =
√

2x + 1.
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Remark: Usually, f ◦ g 6= g ◦ f . Moreover, often only
one of these mappings is defined (exists).

Example
Let A = P({u, v ,w}) (all subsets of {u, v ,w}),

and let f : A→ R, f (X ) = |X |.
Let g : R→ R, g(x) = 3x .

Which of f ◦ g and g ◦ f exist?

Then g ◦ f : A
f−→ R g−→ R exists.

E.g., (g ◦ f )({u, v}) = 32 = 9,

(g ◦ f )(∅) = 30 = 1, or (g ◦ f )({u, v ,w}) = 33 = 27.

But, of course, f ◦ g is not defined: g(R) 6⊆ A.
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Theorem
Let f : A→ B and g : B → C be two mappings

(such that the codomain of f is the domain of g).

(a) If both f and g are injective,

then the composite g ◦ f is also injective.

(b) If both f and g are surjective,

then the composite g ◦ f is also surjective.

(c) If both f and g are bijective,

then the composite g ◦ f is also bijective.
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Proof: (a) f and g are injective, need g ◦ f injective:

x1 6= x2 ⇒ f (x1) 6= f (x2), since f is injective.

Then g(f (x1)) 6= g(f (x2)), since g is injective.

As required: (g ◦ f )(x1) 6= (g ◦ f )(x2).

(b) f and g are surjective, need g ◦ f surjective:

For any c ∈ C there is b ∈ B such that g(b) = c ,
since g is surjective.

There is also a ∈ A such that f (a) = b,
since f is surjective.

Then g(f (a)) = g(b) = c , so (g ◦ f )(a) = c , as req.

(c) f and g are bijective, need g ◦ f bijective:

follows from (a) and (b).
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Identity mapping

Definition
For a set A, the identity mapping IdA : A→ A

is defined as IdA(x) = x .
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Proposition
Suppose that f : A→ B is a bijection. Then

(a) f −1 ◦ f = IdA;

(b) f ◦ f −1 = IdB .

Proof: (a) For any a ∈ A

(f −1 ◦ f )(a) = f −1(f (a)) = a by definition of f −1.

(b) For any b ∈ B there is a ∈ A

such that f (a) = b, since f is bijection.

Then (f ◦ f −1)(b) = f (f −1(b)) = f (f −1(f (a)))

(by definition of f −1) = f (a) = b.
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Cardinalities

For a finite set A, its cardinality |A|
= is the number of elements.

If |A| = n <∞, then A = {a1, a2, . . . , an},
where all ai are different.

This means a bijection f : {1, 2, . . . , n} → A

(so that we write ai = f (i)).

Clearly, two finite sets A,B have the same cardinality

|A| = |B | if there is a bijection f : A→ B .
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Cardinalities of infinite sets

Definition
Two sets A,B have the same cardinality

denoted |A| = |B | if there is a bijection f : A→ B .

Example

Let A = {2i | i ∈ N} and B = {3k | k ∈ N}.
Clearly, 2i → 3i is a bijection, so |A| = |B |.
Both have the same cardinality as N.

For example, i → 2i gives a bijection N→ A.
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Equal cardinalities as an equivalence
Remark. We know: if f : A→ B is a bijection,

then f −1 : B → A is a bijection; symmetric

if f : A→ B and g : B → C are bijections,

then (g ◦ f ) : A→ C is a bijection; transitive

IdA : A→ A (when a→ a) is a bijection. reflexive

Hence |A| = |B | is an equivalence relation.

Equivalence classes are called cardinal numbers.
For finite sets cardinal numbers are the same as positive
integers. (Or numbers are thus defined...)
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We can say bijection between A and B ,

since if there is a bijection f : A→ B ,

then we also have a bijection f −1 : B → A.
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Part ‘equal’ to the whole

Example

Let A = {2i | i ∈ N} ⊆ N and A 6= N.

But |A| = |N|, as we saw:

for example, i → 2i gives a bijection N→ A.
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Example
Prove that any two closed segments on the real line

(of non-zero length) have the same cardinality.

Bijection by geometry: arrange one above another,

draw straight lines as on the picture.
(For equal lengths, consider parallel lines.)

Bijection: injective: different → different;
surjective: every point on the lower segment covered.
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Example
Prove that |(0, 1)| = |R|.

First a bijection f from the open interval (0, 1)
to a semicircle S of diameter 1 without endpoints
as on the picture:
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Stereographic projection
Then a bijection from the semicircle onto the whole real
line (so-called stereographic projection):

As we proved above, the composite g ◦ f of bijections

is a bijection: (0, 1)
f−→ S

g−→ R
from (0, 1) onto R. Hence, |(0, 1)| = |R|.
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Countable sets

Definition
A set A is countable infinite if |A| = |N|;
that is, if there is a bijection f : N→ A.

Then we often write ai = f (i),

so that A = {a1, a2, . . . } is a sequence,

where all ai are different (= injective)

and all elements of A occur (=surjective).

|A| = |N| exactly when A can be written as a sequence
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Definition
A set is countable,

if it is either finite, or countable infinite.

Notation. The cardinality of N
is denoted |N| = ℵ0 (read “aleph-naught”).

So any countable infinite set has cardinality ℵ0.

E.g.: |{2i | i ∈ N}| = ℵ0
= |{3k | k ∈ N}| = |N| = ℵ0.
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Example
Prove that |Z| = ℵ0.

Proof: Need a bijection N→ Z,

that is: represent Z as a sequence a1, a2, . . . ,
where all ai are different and all integers occur.

No need to produce a formula:
it is sufficient to describe such a sequence,
so that it is clear that every element occurs exactly once.

Here, for example: 0, 1,−1, 2,−2, 3,−3, 4,−4, . . . .

This really means that we define a bijection
N = 1 2 3 4 5 6 7 8 9 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ · · ·
Z = 0 1 −1 2 −2 3 −3 4 −4 · · ·
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Remark: For this sequence

0, 1,−1, 2,−2, 3,−3, 4,−4, . . .

a formula can be easily produced:

f (k) =


0 if k = 1,

k/2 if k is even,

(1− k)/2 if k is odd and > 1.

But that sequence, or that table, is actually clearer

than proving that this formula gives a bijection!

Usually bijection is not unique: e.g.
0, 1, 2, −1, −2, 3, 4, −3, −4, 5, 6, −5, −6, . . .
is just as good.
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Extra element

Example
Prove that |{w} ∪ N| = |N|.

Proof: We need a bijection: N→ {w} ∪ N:

E.g.: 1→ w , 2→ 1, 3→ 2, . . .

Or simply a sequence

w , 1, 2, 3, . . . ,

which clearly contains all elements of {w} ∪ N exactly
once.
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Extra point in geometry

Example
Prove that |{2} ∪ [0, 1]| = |[0, 1]|.

Proof: Idea: isolate a sequence,

which can be ‘shifted’ to accommodate extra point,

and all the rest send ‘to itself’.
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Sequence: 1,
1

2
,

1

3
,

1

4
,

1

5
, . . . (without 0)

Map by blue lines: 2→ 1, 1→ 1

2
,

1

2
→ 1

3
, . . .

and each of the other points to itself (by green arrows):

u → u for all u 6= 1

k
.

Bijection: injective: different to different,
surjective: all covered.
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We can say: 1 +∞ =∞ (more precise later).

Z consists of ‘two infinities’: negative, positive

but still ℵ0 + ℵ0 = ℵ0, as we showed above.
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Infinite hotel
‘Infinite hotel’: rooms 1, 2, 3, . . .

Even if all rooms are occupied, by guests a1, a2, . . . ,

when one more guest arrives,

can still be accommodated:

every guest moves to the next room, so 1st room
becomes available.

Now infinitely many more guests arrive b1, b2, . . . .

Can still be accommodated: ai moves to room 2i , so
all odd numbers become free, and each bj is given
room 2j − 1.
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|N× N| = ℵ0
Now suppose that we have ‘infinitely many guests from
each of infinitely many galaxies’, Can the infinite hotel
still accommodate them all?

‘Infinitely many infinities’:

Important Example
Prove that |N× N| = ℵ0,

by constructing a bijection from N
to the set of pairs N× N = {(i , j) | i , j ∈ N}.

(Here, (i , j) is the jth guest from the ith galaxy.)
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|N× N| = ℵ0

Need a bijection from N → N× N = {(i , j) | i , j ∈ N}
Arrange the pairs in the infinite table (matrix)

(1,1) (1,2) (1,3) (1,4) (1,5) · · ·
(2,1) (2,2) (2,3) (2,4) (2,5) · · ·
(3,1) (3,2) (3,3) (3,4) (3,5) · · ·
(4,1) (4,2) (4,3) (4,4) (4,5) · · ·
(5,1) (5,2) (5,3) (5,4) (5,5) · · ·

...
...

...
...

... . . .
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|N× N| = ℵ0 continued
.......... and indicate a path going over this table
such that all pairs are numbered in turn,
without repetitions:

1 → 2 6 → 7 15 · · ·
↙ ↗ ↙ ↗ · · ·

3 5 8 14 · · · · · ·
↓ ↗ ↙ ↗ . . .

4 9 13 . . .

↙ ↗ . . .

10 12 . . .

↓ ↗ . . .

11 . . .
... . . .
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|N× N| = ℵ0 continued
1 → 2 6 → 7 15 · · ·
↙ ↗ ↙ ↗ · · ·

3 5 8 14 · · · · · ·
↓ ↗ ↙ ↗ . . .

4 9 13 . . .

. . . . . . . . .
Meaning a mapping: 1→ (1, 1), 2→ (1, 2),
3→ (2, 1), 4→ (3, 1), 5→ (2, 2), . . .

The whole infinite table of pairs is covered by this
zig-zag path, so every pair is assigned unique number
that is mapped to it. So this is a bijection N→ N× N,
so, |N× N| = |N| = ℵ0.
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Properties of countable sets

Theorem
Let A be a countable infinite set, |A| = ℵ0.

(a) If A1 ⊆ A, then A1 is countable

(either finite, or |A1| = ℵ0).

(b) If B → A is an injection, then B is countable

(either finite, or |B | = ℵ0).
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Proof of (a):

Given |A| = ℵ0 and A1 ⊆ A;

need A1 finite or |A1| = ℵ0.

We have A = {a1, a2, . . . } is a sequence,

where all the ai are different.

Going consecutively over this sequence in order,

we pick the first element that is in A1, say, ai1,

then the next in A1, say, ai2, and so on.

If at some step there are no more elements in A1,

then A1 is finite.
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... If this process does not stop, we obtain

a representation of A1 as a sequence

A1 = {ai1, ai2, ai3, . . . }, where all the aik are different,

because all the ai were different.

And every element of A1 is eventually picked,

since the sequence A = {a1, a2, . . . }
contains all elements of A ⊇ A1.

This means we have a bijection f : N→ A1

by the rule f (k) = aik ,

so |A1| = |N| = ℵ0.
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Proof of (b): Given |A| = ℵ0
and an injection g : B → A; need: B is countable.

We know g : B → g(B) is a bijection onto the image,

so that |B | = |g(B)|,
that is, B has the same cardinality as g(B).

The image g(B) ⊆ A is countable by part (a).

Hence the result.
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Theorem: |Q| = |N| = ℵ0

The set of rational numbers Q is countable infinite
(that is, |Q| = |N| = ℵ0).

Proof. First consider positive rational numbers Q+.

Every number r ∈ Q+ has a unique representation
as a reduced fraction r = m/n with m, n ∈ N coprime.

Then the mapping f : Q+ → N× N by the rule

f (m/n) = (m, n)

is well defined since these m, n are unique for r :

m1/n1 = m2/n2 with (m1, n1) 6= (m2, n2) only with
reduction — impossible as we only use reduced.

The mapping f is clearly injective.
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Thus, we have an injective mapping f : Q+ → N× N.

By Example above, |N× N| = ℵ0.

Recall part (b) of the preceding theorem:

If B → A is injective, and |A| = ℵ0,

then B is countable.

By this theorem we now have |Q+| = ℵ0.
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The whole of Q:

We proved |Q+| = ℵ0,

so Q+ = {r1, r2, r3, . . . } is a sequence.

Now we can write the whole Q as the sequence: e.g.,

{0, r1,−r1, r2,−r2, r3,−r3, . . . }.
All positive and all negative rationals are here.

Hence |Q| = |N| = ℵ0.
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Remark. It may seem strange that |Q| = |N|,
because Q is ‘dense’ on the real line,

while N consists of ‘separate’ points.

Indeed, if other properties are considered:

closeness, or order, or convergence of subsequences,

then Q and N are different.

But when Q and N are viewed as ‘pure’ (‘bare’) sets,

without those additional properties,

then we proved they indeed have

‘the same number of elements’.
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Counterintuitive fact (optional)
We know |Q| = ℵ0,

or Q can be listed as a sequence: Q = {a1, a2, . . . }.
Cover a1 with interval of length 1 centred at a1,

then cover a2 with interval of length 1/2 centred at a2,

then a3 with interval of length 1/4 centred at a3, . . . .

cover ai with interval of length 1/2i−1 centred at ai .

As a result all rational points will be covered with
nonzero length intervals.

One might think, then the whole R is covered by these
intervals! But no: the sum of lengths is
1 + 1/2 + 1/4 + · · · = 2.
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