|deas of mathematical proof
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Relations. Order. Equivalence.
Mappings.
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Relations

Definition
A relation on a set S

is any subset R C S x S of the Cartesian square.

SXS§

S
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Notation

Usually, instead of (s, t) € R
we write sRt and say:

s and t are in relation R, or s, t satisfy relation R.

Order is important:

it may happen that (s, t) € R but (t,s) € R.

Some relations are written using the symbol ~,

or other special symbols (like order relations <).
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Examples

Example
S = all people, define aRb if a shook hands with b. J

Example
S=R and R={(x,x?)]|xeR},
that is, aRb if b= a°.

If we regard the Cartesian square S x S

as (x, y) coordinate plane, R is the graph of y = x2.

4/72
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Examples

Example
S = all triangles, R is defined as follows:

aRb if a has greater area than b.

Example
S = people, R is defined as follows:

aRb if a likes b.
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Types of relations
Definition
A relation R onaset S is said to be
e transitive if aRb and bRc implies aRc;
e symmetric if aRb implies bRa;
e antisymmetric if aRb and bRa implies a = b;

o reflexive if aRa for all a € S.

Example

S = all people, aRb if a shook hands with b. This
relation: is not transitive; is symmetric; is reflexive or not
depending on definition whether you can shake hands
with yourself; is not antisymmetric.
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Example
S=Rand R = {(x,x?) | x € R}, that is, aRb if b = a°.

This relation is not transitive: 2R4 and 4R16, but not
2R16 (just one counterexample is enough!).

It is not symmetric: 2R4, but not 4R2.

It is antisymmetric: if aRb and bRa, then b = a% and
a = b?, so both positive, and a = b* = (a%)% = a*,
whence a=0ora=1, and then b=0= g or

b =1 = a, respectively.

It is not reflexive: 2R2 is not true.
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Example
S =R and R is defined as xRy if x < y.

This R transitive: a< b<c¢c = a<c.
It is antisymmetric: a< band b<a= a=b.
It is reflexive: a < a.

It is not symmetric: 3R4, but 4R3

(that is, 4R3 is not true).
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Example

S =7 and aRb if a — b is even. Determine if this
relation is transitive, symmetric, reflexive, antisymmetric.

This R is transitive: if aRb and bRc, this means a — b is
even and b — c is even; then the sum is also even:
a— b+ b— c=a— c, which means aRc, as required.

It is reflexive: a — a = 0 is even, so aRa for any a € 7Z,
as required.

It is symmetric: if a — b is even, then b — a is even
(thus, aRb implies bRa).

It is not antisymmetric: 2 — 4 and 4 — 2 are even, but

244

Slides Week 21 (Relations. Order. Equivalenc Ideas of mathematical proof 9 /72




Example

Let R be a relation on R defined as: xRy if x°* < y2.
Determine if this relation is transitive, symmetric,
reflexive, antisymmetric.

This R is transitive: if aRb and bRc,

this means a% < b? < ¢?, so a° < ¢?,

which means aRc, as required.

It is reflexive: a’> < a°, so aRa for any a € R, as required.
It is not symmetric: 12 < 22, but 22 £ 12.

It is not antisymmetric: (—3)% < 32 and 32 < (—3)?,

but —3 # 3.
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Typical error: a®> < b? and b?> < a° does imply a> = b?.

But does not imply a = b, needed for antisymmetric.
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Partial order relations

Definition.

A relation R on a set S is called a (partial) order if R
is

@ transitive,
@ reflexive,

@ antisymmetric.

“Partial” means not every two elements of S have to be
comparable.

An order R on S is total if for every a,b € S either aRb
or bRa (that is, every two elements are comparable).
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Notation
If R is an order,

then aRb is often denoted simply by a < b.

In general, < is not the ordinary inequality

for numbers (but may be ordinary inequality too).

13 /72
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Example

On R the ordinary inequality < is an order relation. Total
order. The same for Q, Z, N, or any other subset of R.

Example

Diagram of relation ordinary order <
between real numbers on the set [2,7]:

7

2 7
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Proposition (Order by inclusion)

Let A be a set. Then the power set Z(A) (of all subsets
of A) is ordered by inclusion: BRC if B C C.

Usually denoted by C: instead of BRC we write B C C. |

Proof:
It is transitive: B C C and C C D implies B C D.

It is reflexive: B C B for any B € Z(A).
It is antisymmetric: if B C C and C C B, then B = C.
Thus, it is an order. ]

Not a total order: may be sets B Z C and C £ B.
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Example

Depict the relation C on the set &({a, b}) by
a diagram, as a subset of the Cartesian square.

‘@({87 b}) - {Qv {a}v {b}7 {av b}}

{a,b} ° ° ° o

b} . .
{a} [ .
@' o

& {a} (b} {a,b)

Slides Week 21 (Relations. Order. Equivalenc Ideas of mathematical proof 16 / 72



Proposition (Order by divisibility)
Let S = N and let aRb if a divides b without remainder

(which means b = ak for k € Z). Prove that this is an
order. (Usually denoted by a | b, read “a divides b".)

Proof: Transitive: a| band b | ¢
means b = ak and ¢ = bl for k,| € Z.

Then ¢ = (ak)l = a(kl), where kIl € Z,
so a | ¢, as required.

Reflexive: a | a, since a=a- 1.

Antisymmetric: if a | b and b | a, since both are positive,

then a < b and b < a, so a = b, as required.

Thus, this is an order relation. ]
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Example
Consider S ={1,2,3,4,5,6} ordered by divisibility:
a<b if alb.

Depict this order on the diagram as a subset of S x S.

aNwwPhrPrOD

T — | —" T — T

=123456
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Order-related definitions
Definitions. Let < be an order relation on a set S

(here < is not necessarily inequality for numbers!),

then various self-explanatory terms are used.
Let T C S:

e the greatest element of T

istg€ T suchthat t <ty forallt e T
(such ty; may not exist!);

@ an upper bound for T isany s € S
such that t <sforallte T
(such s is usually not unique or may not exist);
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Order-related definitions

@ the smallest upper bound for T,
also called supremum, denoted sup T
(may not exist);

@ the smallest element of T is ty; € T such that
to < tforall t € T (such ty may not exist!);

@ a lower bound for T isany s € §
such that s < tforallte T
(such s is not unique or may not exist!);

@ the greatest lower bound for T,
also called infimum, denoted inf T;

@ etc.
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Example
Let S = R (with respect to ordinary inequality order)

and T = {%|neN}

T has greatest element 1.

Number 4.5 is an upper bound, so is 9, or 1002, ...
1 =sup T (least upper bound = supremum).

Has no least element.

—12 is a lower bound, so is —888, etc.

0 =inf T (greatest lower bound = infimum).
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Clearly, in general:

Facts:
For a subset T of an ordered set S:

If the greatest element of T exists, then = sup T.

If the least element of T exists, then = inf T.

If to =sup T € T, then t; is the greatest element of T.
If s =inf T € T, then s; is the least element of T.
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Example
With ordinary order, N has no upper bounds,

but has inf =1 = least element.

Example
With ordinary order, inf([3,5)) =3 = least element;

sup([3,5)) = b, has no greatest element.
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Example

Consider N ordered by divisibility: aRb if a | b.

Let T = {3,5,6,7}.

Determine inf T, sup T, greatest, least elements, if any.
Is 8 an upper bound for T7?

There is no greatest element in T.

Number 8 is not an upper bound for T

(in fact, 8 is not comparable with any element of T).
The supremum of T is actually 210,

the least common multiple.

inf T = 1. No least element in T.
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Example
Consider A= Z({1,2,3,4,5})
= the set of all subsets of {1,2,3,4,5}

ordered by inclusion.

Find inf B and sup B (if exist), where B C A is given as
B ={{1,2,4}, {2,3,5}, {1,2,4}}.

inf B = biggest set contained in all three elements of B:
actually {2}.

sup B = smallest set containing all three elements of B:
actually, {1,2,3,4,5}.
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Example

More generally: consider A= Z(S)
= the set of all subsets of a set S ordered by inclusion.

Let B C A be a subset of A.

What is inf B?
= biggest set contained in all elements of B:

actually, inf B = ﬂ b.
beB

What is sup B?
= smallest set containing all elements of B:
actually, sup B = U b.
beB
T )




Lexicographical order
Definition
Order Ax B (or Ay x Ay X A3 X --+)

as in a dictionary: compare first elements,

only if equal, compare second elements, etc.

Example

On R x R define (a, b) <; (c, d)

if either a < ¢ (while b and d can be any),
ora=cand b<d.

Eg. (2,3) > (1,500), (2,2) < (2,4), etc.
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Example
Find the supremum (least upper bound)

with respect to <, of theset T C R x R

consisting of all points in the square
with vertices (—1,-1), (—=1,1), (1,-1), (1,1).
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Any point on the right is greater, no matter at which
height the points are.

Hence all points on the right side are greater than all
other points of the square.

For points on this right side, the first coordinate is the
same, so we look at the second coordinate. Hence (1,1)
is the greatest point of T with respect to <;.

Then (1,1) =sup T automatically.
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Equivalence relations

Definition.
A relation R on a set S is called

an equivalence if R is
@ transitive,
@ symmetric,

o reflexive.

Usually, an equivalence is denoted by ~/|,

that is, we write a ~ b instead of aRb

(should be clear from the context, which equivalence
relation).
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‘Trivial’ example of equivalence is equality =:

on any set, transitive: a=band b=c = a = c;
reflexive: a =a; symmetric: a=b = b= a.
Example

Relation “=" as a subset of S x S, for S = [2;7]:
all points (a, a) form the ‘diagonal’:

7

2 P
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Example
Let S = R and aRb if a> = b°.

Prove that R is an equivalence.

Transitive: aRb and bRc means a2 = b? and b% = ¢?,

2

whence a®> = ¢?, which means aRc as required.

Symmetric: a°> = b? implies b? = a°.

2 _ 2

Reflexive: a ac.
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Example

Let ~ be a relation on the set
A=1{1,2,3,4,5,6,7,8} defined as

a~b ifandonlyif a— b is divisible by 3.

Prove that ~ is an equivalence relation and depict this
relation on the diagram as a subset of A x A.

Transitive: a~ b and b~c¢c = a~c:

a—b=3k and b—c=3/ =
(a—b)+(b—c)=3k+3l;, a—c=3(k+1).

Symmetric: a~b = b~ a:
a—b=3k = b—a=3(—k).

Reflexive: a ~ a: a—a=3-0.
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Example (continued)

Let ~ be a relation on the set
A=1{1,2,3,4,5,6,7,8} defined as

a~b ifandonlyif a— b is divisible by 3.

...depict this relation as a subset of A x A.

aAaNwPhrOO N0

12345678
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Equivalence classes

Definition
Let ~ be an equivalence on a set S.
The equivalence class of s € S is

[so)] ={s€S|s~s}

= the set of all elements equivalent to sp.
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Example
Let S=7Z and let a~ b if a— b is even.

(Checked above that this is an equivalence.)

What is the equivalence class [3]7 of [6]7

(with respect to this equivalence ~).

We have [3] = all odd numbers. Also = [7], etc.

[6] = all even numbers, = [2] = [8] = [0], etc.
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Example
Let S=TR and let a ~ b if a°> = b°.
(Checked above that this is an equivalence.)

What is the equivalence class [3]?
(with respect to this equivalence ~)

We have [3] = {3, —3}.

Example

Let S = the players in the Premier football league, and
let a ~ b if a and b are in the same team.

It is easy to show that this is an equivalence.

For a player x, then [x] = the team in which x plays.
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Partition into equivalence classes

Theorem
If ~ is an equivalence relation on a set S,

then any two equivalence classes with respect to ~
either coincide or are disjoint: for any a,b € S,

either [a] =[b], or [a]N[b] = 2.

Proof:
If [a] N [b] = @, then there is nothing to prove.

So we can assume that [a] N [b] # @
(=it remains to consider the case where [a] N [b] # ©),

and then we need to prove [a] = [b].
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..... [a] N [b] # @ and we need to prove [a] = [b].

First we prove that a ~ b. Let u € [a] N [b], which exists
because [a] N [b] # @ in the case under consideration.
So u € [a] and u € [b], that is, u ~ a and u ~ b.

Since ~ is symmetric, we also have a ~ u;

together with u ~ b by transitivity a ~ b, as claimed.

Finally prove [a] = [b]. First, [a] C [b]: for x on the |.h.s,
x ~ a, but a ~ b, hence x ~ b by transitivity, that is,

x € [b], as required.

The same type of argument for reverse [a] D [b]: for y

on the r.his, y ~ b, but a ~ b and b ~ a by symmetric,
hence y ~ a by transitivity, that is, y € [a], as required.

Both [a] C [b] and [a] 2 [b] proved, so [a] = [b]. [
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Corollary

If ~ is an equivalence on a set S,

then S is the disjoint union

of the equivalence classes with respect to ~ .

In other words, every element of S is in one of the
classes, and different classes have empty intersection.

Also called a partition of the set S.
In symbolic form: S = U[s]

sesS

and if [s] # [t], then [s] N [t] = @.

Disjoint = the theorem above. It remains to show that
every s € S is in one of the classes. But s ~ s by
reflexivity, so s € [s].

Y



Partition = into equivalence classes

This can be visualized as ‘tiling’ of S into equivalence
classes:

Converse: if S is a disjoint union of some subsets, then
we define an equivalence by a ~ b if a, b are in the same
subset. Easy to show that this is an equivalence
(transitive, symmetric, and reflexive), and those subsets
are precisely the equivalence classes.
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Set of equivalence classes = quotient set
S

=
Sh

Equivalence <— Partition

Importance: we then think of those classes
as new entities, instead of their elements.

E.g.: partition of footballers into teams:
then we speak about results between teams.

42 /72
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Integers mod n
Example (from Algebra)

Let n be a fixed integer and let ~ be the relation on
Z. defined as a~ b if a— b is divisible by n.

Prove that this is an equivalence.

Transitive: a~ b and b~ ¢ means
a—b=nk and b—c=nl for k,| € Z. Take the sum:
a—b+b—c=a—c=nk+nl=nlk+1), soa~c.

Symmetric: a~b = a—b=nk = b—a=n(—k),
that is, b ~ a.

Reflexive: a—a=n-0.
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Arithmetic mod n
Hence 7Z is partitioned into equivalence classes mod n:

a — b is divisible by n < a, b have the same remainders
after division by n.

So the classes actually are [0], [1],...,[n — 1],
where [i] is the set of all integers

with remainder i after division by n,

thatis, [i] = {i+ kn | k € Z}.

In Algebra these classes are regarded as elements, can be
added, multiplied, etc.

‘Arithmetic modulo n': so-called ring Z/nZ consisting of
n elements.
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Example
Let ~ on R? be defined as
(a,b) ~ (c,d) if a®+ b*=c?+d%

Prove that this is an equivalence and find the
equivalence classes.

Transitive:

(a,b) ~ (c,d) and (c,d) ~ (u,v) means

A+ b>=c?+d? and 2+ d? = v? + v2, then
22+ b =u?+v? so (ab)~ (u,v), as required.

Reflexive: a2 + b? = a® + b?, so (a, b) ~ (a, b).

Symmetric: a® + b?> = c® + d? implies
c?+d? = a% + b2
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Equivalence classes are circles with centre at (0, 0):
[(a,6)] = {(x,¥) | (x,y) ~ (2, b)}, that is,

x? 4+ y? = a® + b?> = const, so by Pythagoras this is
the circle of radius v/a? 4+ b2 with centre at (0, 0).

These circles clearly partition the whole plane R?
(together with {(0,0)} = circle of radius 0, the class

[(0,0)]).

T
L/
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Partition — equivalence

Example
The square [0, 1] x [0, 1] is partitioned into vertical lines.

Write the corresponding equivalence by a formula.

One possible answer is (a, b) ~ (c,d) if a=rc.

Then equivalence classes are precisely the vertical lines.
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Example
Let R be a relation on N defined as aRb if a < b+ 1.

Determine if it is transitive, symmetric, antisymmetric,
reflexive. Is it an order or equivalence, or neither?

It is not transitive: 3R2 and 2R1, but 3R1 is not true:
3<2+4+1and2<1+1, but3£1+1.

So neither order nor equivalence.

Not symmetric: 1R5, but 5R1 not true.
Not antisymmetric: 1R2 and 2R1.
Reflexive: kRk as k < k + 1.
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Example
Let ~ be a relation on R x R

defined as (a, b) ~ (¢, d) if ab= cd.

Prove that ~ is an equivalence.

Find the equivalence classes of (1,2) and of (3,0).

Transitive: (a,b) ~ (¢, d) and (c,d) ~ (u,v)
means ab =cd and cd = uv

whence ab = uv, thatis, (a,b) ~ (u,v).

Symmetric: ab = c¢d = cd = ab,
that is, (a,b) ~ (c,d) = (c,d) ~ (a,b).

Reflexive: ab = ab.
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[(1,2)] = {(x,y) | xy =1-2 =2}, that'is, y = 2/x.
The class = the graph of y = 2/x:

'}

(1,2)

A 2
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[(3,0)] ={(x,y) | xx =3-0=0}, that is, xy =0,
which means x =0 or y = 0.

The class = union of the two axes:
A

L 4

(3,0)

Slides Week 21 (Relations. Order. Equivalenc Ideas of mathematical proof 51/ 72



Mappings
Definition
A mapping f : A— B from a set A
to a set B is a rule that associates with every a € A

a certain unique (well-defined) element b € B,

denoted b = f(a) and called the image of a under f.

Here, when we write f : A — B, it is assumed that f is
defined on the whole of A, that is, the domain of f is A.

(In some books or articles, f : A — B only means that
the domain is a subset of A.)

For A, B C R or C, mappings are often called functions
(in some books, any mappings are called functions).
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[llustrations by diagrams

7 =

(We can draw a similar picture even if A= B.)
From each a € A there must be an outgoing arrow,
but only one.

Two different elements can have equal images.
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More terminology and notation

Given a mapping f : A — B, the image of f is
f(A)={be€ B| b= f(a) for some a € A};

also called the range of f, or the image of A.

‘Destination’ set B is codomain. In general, f(A) C B.

For a subset A; C A, the image of Ay is
f(A)) ={be B| b= f(a) for some a € A }.

The image f(a) of an element a € A
is also called the value of f at a.

We say that f maps a to f(a).
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The rule defining a mapping f : A — B can be anything,

it only matters that images are well-defined:
e aformula: f: R — R, f(x)=x%

@ atable: f:{a b,c,d} — {1,2,3}, where
x=|al|b|c|d]|
Fo)= |1/1[2[1]

@ piece-wise formulae: f : R — Z,

1 ifx>0
f(x)=4¢0 ifx=0;
-1 ifx<0

@ any well-defined rule: f: T — R, where T is the
set of all triangles on a given plane,
and f(t) = area of the triangle t.
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Equal mappings

Two mappings are equal if they have the same domain
and the same image of every element in the domain

... does not matter if they are defined by different rules.

Also, even if they are defined by the same rule, they are
not equal if the domains are different.

Eg: f:R—=R, f(x)=1forall x,and g : R — R,
g(x) = sin®x + cos’> x for all x, are equal mappings.

“Ye shall know them by their fruits”
But u:Z — N, u(x) =x% and v:N = N, v(x) = x?

are different, since have different domains assigned.
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Example
Let A= Z({a, b, c}) (set of all subsets of {a, b, c}),

let f: A— A f(X)=XnNn{a} (here X € Z({a, b, c})).

For example, f({b,c}) = {b,c} N{a} = 2,
or f({a,c})={a c}n{a} ={a}.

The image of f is {@, {a}}.

Example

Let A= Z({a, b,c}),

let f: A — Z be given by f(X) = |X|.

For example, f({b,c}) = 2.
The image of f then is {0,1,2,3}. (Note: 0 = f(2).)
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Example
2x
x2+1

Find the image of f : R - R, f(x) =

Simply means, for which y there is x satisfying f(x) =y,
that is, for which y there exists a solution
2x
x2+1
Can multiply by denominator # O:

of

=y, where x is unknown.

2+ /4 —4y?

2y

x=yx*+y, yx*—=2x+y=0, xo=

if y #0.
This solutions exist if and only if 4 — 4y? > 0,

that is, for y € [—1.1
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The case y = 0 must be considered separately:
2x
X2+ 1
Thus, the image of f is [—1,1].

= 0 also has a solution x = 0.
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Example
How many mappings are there

from a finite set A with m elements

to a finite set B with n elements? )

Solution: Every element of A can be mapped (=sent)
to any of n elements of B, independently. Therefore

. o« o e f— m 1 1
there are n-n---n=n" possible mappings.

m
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Rigorous definition of a mapping

The word ‘rule’ in the above definition of a mapping
is rather imprecise.

A rigorous definition is in terms of sets.

Definition
A mapping f : A— B is a subset of A x B
such that for every a € A there is a unique b € B

such that (a, b) € f, then of course we write b = f(a).

In other words, “a function is its graph”.
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Vertical Line Test

When A, B C R, a set on the plane R x R above/below
A is a mapping (a function) if it satisfies the “Vertical
Line Test”: it must have exactly one intersection point
with every vertical line through A.

[\J/

a mapping not a mapping
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Implicitly defined mappings

Often a mapping is defined ‘implicitly’:

some condition defines a subset of A x B,

which may, or may not, be a mapping.
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Example
Is F={(x,y)|x*>+y?=1} a mapping?

This is a circle, of radius 1 centred at (0, 0).

A

1

TN

)
{1

7

Fails Vertical Line Test: not a mapping.
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Example
Is F1={(x,y) |y >0and x>+ y?>=1} a mapping?

[

1

A

—al 1

This is the upper semicircle.

Vertical Line Test OK; domain [—1, 1]

is a mapping F;:[-1,1] = R,

actually, y =+v1—x2 or Fi(x) = V1 — X2
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Example
Is F={(x,y) eR?®| x+|x|=y+|y|} amapping?

a+l]aj=2aif a>0, and a+|a|=0 if a<O0.
When x>0 and y >0
the condition means 2x =2y, x =y.

When x <0 and y >0
the condition means 0 =2y, y =0.

When x>0 and y <0
the condition means 2x =0, x = 0.

When x <0 and y <0
the condition means 0 = 0, that is, always holds
throughout this area.
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Vertical Line Test not satisfied for x < 0, so not a
mapping.

But ‘becomes’ a mapping within (0,00) X R, that is,
Fi={(xy) €(0,00) xR | x+|x| =y + |yl}
is a mapping F;:(0,00) = R, Fi(x) = x.
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Sequences as mappings

Definition
A sequence is a mapping f : N — A;
traditional notation: a; = f(i); (ai)ien-

Diagram of a sequence: domain is N,
codomain here is R (for a sequence of real numbers).

a,
a;
0,

1 >34 56 7,
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Example

Let A= Z({u,v,w}) (all subsets of {u,v,w}).
Depict f:A—{0,1,2,3,4,5}, f(X)=|X],

as a subset of the Cartesian product.

Eg, f(@)=0 f({u,v}) =2, etc.

5
3
3
2

8
Ot—e

B
& Au} (v} {w} {uvHu,wHv,w} {uv,w}
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Theorem (Image of union and intersection)
Let f: A— B bea mapping, and U,V C A.

(a) F(UUV)=Ff(U)UF(V);

(b) fF(UNV)CFU)YNTF(V), and “£" in general.

Proof of (a): “C": On the left: f(x) where x € U or
x € V by def. of union.

Then f(x) € f(U) or f(x) € f(V),

so f(x) € r.h.s. by def. of union.

“2": On the right: in f(U) or in f(V) by def. of union.
So itis f(x) forx € Uor x € V,

which means x € U U V by def. of union,

and then f(x) € f(UU V) = lLhs.
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Image of intersection
Proof of (b): f(UN V) C f(U)Nf(V),
and “#" in general.

On the left: f(x) where x € U and x € V by def. of
Intersection.

Then f(x) € f(U) and f(x) € f(V),
so f(x) € r.h.s. by def. of intersection.

A simple example where f(UN V) # f(U)N f(V):

Let f: {a,b} — {1}, f(a)=1and f(b) =1

Let U= {a} and V = {b}

Then f(UNV) =f(9) =

while f(U)ﬂf(V) {1}ﬂ{1} {1}. ]
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Example
Another example where f(UN V) # f(U) N f(V):

Let f: [-2,2] — R be defined as f(x) = x*.
Let U=[-2,1] and V =[0,2]

We have UNV =[0,1], so f(UNV)=]0,1].

We have f(U) =1[0,4] and f(V)=0,4],
so f(U)Nnf(V)=10,4]

£ FUNV) =]0,1].
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