

Time Constrained Assessment Examination

School	School of Mathematics and Physics
Module Title	Ideas of Mathematical Proof
Module Code	MTH1003M
Module Coordinator	E. I. Khukhro
Duration of Assessment	3 hrs
Date	2nd of June 2021
Release Time	15:00
Submission Time	18:00

General Instructions to Candidates

1. In sitting this examination you agree to **comply** with the University of Lincoln Code of Conduct in Examinations.
2. You **must** submit your answers as a PDF to Turnitin on Blackboard **before** the submission time: failure to do so will be classified as misconduct in examinations. **We strongly recommend that you have your work submitted at least 15 minutes prior to the deadline.**
3. You **must** also send a copy of your work as an attachment to the email address **SMPsubmissions@lincoln.ac.uk** at the same time. You must place the Module Code and your Student Id in the Subject Field of the Mail.
4. This assessment is an **open resource format**: you may use online resources, lecture and seminar notes, text books and journals.
5. **No collaboration or interaction** with other candidates or individuals using any means of communication or device is permitted during online examinations.
6. All work will be **subject to plagiarism and academic integrity checks**. In submitting your assessment you are claiming that it is your own original work; if standard checks suggest otherwise, Academic Misconduct Regulations will be applied.
7. You must **show all your working**, and submit only one version of your solution. You may cross out any failed attempts and they will be ignored.
8. **The duration of the Time Constrained Assessment will vary for those students with Personal Academic Study Support (PASS)**. Extensions do not apply, but Extenuating Circumstances can be applied for in the normal way.

Module Specific Instructions to Candidates

QUESTIONS TO ANSWER: Answer ALL FOUR questions.

MARKING SCHEME: Each question carries TWENTY FIVE (25) marks

Question 1

(a) Solve the system of simultaneous inequalities [8 marks]

$$\begin{aligned}x^2 + x - 6 &> 0 \\x^2 - 25 &< 0\end{aligned}$$

and represent the solution as a union of intervals.

(b) Let \sim be a relation on the (x, y) coordinate plane $\mathbb{R} \times \mathbb{R}$ defined as [9 marks]

$$(x_1, y_1) \sim (x_2, y_2) \text{ if } |x_1| + y_1 = |x_2| + y_2.$$

Prove that \sim is an equivalence relation and indicate the equivalence classes of the elements $(0, 0)$ and $(1, -2)$ by pictures on the coordinate plane.

(c) State and prove the theorem about the limit of the sum $(a_n + b_n)$ of two convergent sequences (a_n) and (b_n) . [8 marks]

Question 2

(a) Determine the truth tables for the following statements and indicate which of them (if any) are tautologies or contradictions:

(i) $(P \Rightarrow Q) \vee (P \wedge (\neg Q))$; [4 marks]

(ii) $(P \vee Q) \Rightarrow (P \wedge (\neg Q))$. [4 marks]

(b) (i) State the definition of a finite limit of a sequence $\lim_{n \rightarrow \infty} a_n = a$. [4 marks]

(ii) Prove from first principles, by verifying the definition, that [5 marks]

$$\lim_{n \rightarrow \infty} \frac{n}{2n+1} = \frac{1}{2}.$$

(c) Let S be the set of all infinite sequences of the form (a_1, a_2, \dots) , where each of the a_i is either 1 or 2. Use Cantor's diagonalization method to prove by contradiction that S is uncountable. [8 marks]

Question 3

(a) Let a_n be a sequence defined recursively as $a_1 = 5$, $a_2 = 7$, and $a_i = a_{i-1} + 2a_{i-2} - 6$ for $i \geq 3$. [8 marks]

Use mathematical induction to prove that $a_n = 2^n + 3$ for all positive integers n .

[Hint: first check the cases $n = 1$ and $n = 2$.]

(b) Given that A and B are sets, use the properties of operations on sets to simplify the expression [8 marks]

$$\overline{A \cap (B \cup A)}.$$

(c) For each of the following mappings, determine whether it is (1) injective, (2) surjective, giving reasons to your answers.

(i) $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, $f((a, b)) = 2^a \cdot 3^b$; [3 marks]

(ii) $g : [0, \infty) \rightarrow (0, 1]$, $g(x) = \frac{1}{x^2 + 1}$; [3 marks]

(iii) $h : A \rightarrow A$, where $A = \mathcal{P}(\{a, b, c\})$ is the set of all subsets of $\{a, b, c\}$ and $h(X) = X \cap \{b, c\}$. [3 marks]

Question 4

(a) Use mathematical induction to prove that $3^n > 20n$ [8 marks] for any positive integer $n \geq 4$.

(b) Let R be the relation on the set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ defined as aRb if b is divisible by a .

- (i) Prove that R is an order relation. [5 marks]
- (ii) Depict the relation R as a subset on the diagram of the Cartesian product $A \times A$. [4 marks]

(c) Demonstrate that the sets of positive integers \mathbb{N} and all integers \mathbb{Z} have [8 marks] the same cardinality by exhibiting a bijective mapping $f : \mathbb{Z} \rightarrow \mathbb{N}$.