Even and odd functions

- To see if f is odd, even or neither, replace every instance of x with -x.
 If you get back the original function, f is
- If you get back the original function, f is even. If you find the negative of the original function, f is odd.
- If neither of these things is true, f is neither odd nor even.

$\frac{\text{Example}}{g(x)} = 2x^3 + x$

=>
$$g(-x) = 2(-x)^3 + (-x)$$

"implies that" = $-2x^3 - x = -g(x)$

Exponential functions

- An exponential function is a function of the form $y = a^x$, where a is a real constant
- The domain is the whole real line, IR, and the range is (0,00): the graph never touches the x-axis.
- The standard exponential function is $y = e^x = \exp(x)$, where $e \approx 2.718 \cdots$ (an irrational number)
- The function exp(x) is equal to its own derivative, and is defined by the power series

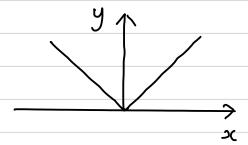
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

- Its inverse is the natural Logarithm,
$$y = Ln \times x$$
, whose domain and range are $(0, \infty)$ and R respectively.

Piecewise - defined functions

1) The absolute value function is given by $f(x) = |x| = \begin{cases} x & \text{for } x \ge 0 \\ -x & \text{for } x < 0 \end{cases}$

Domain: $(-\infty, \infty) = \mathbb{R}$ Range: $[0, \infty)$



- 2) The signum function $f(x) = sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$
- The range of the signum function is 1-1, 0, 13: the set of the three numbers -1, 0 and 1. Its domain is 1R.

Hyperbolic functions

These are even and odd combinations of exand ex

$$sinh x = \frac{e^{x} - e^{-x}}{2} : hy perbolic sine$$

$$cosh x = \frac{e^{x} + e^{-x}}{2} : hy perbolic$$

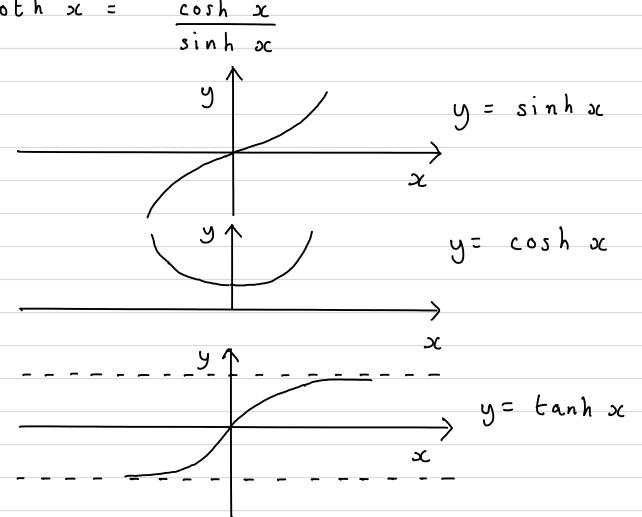
$$cosine$$

$$tanh x = \frac{sinh x}{cosh x} : hy perbolic$$

$$tangent$$

$$csch x = \frac{1}{sinh x} : sech x = \frac{1}{cosh x}$$

$$coth x = \frac{cosh x}{sinh x}$$

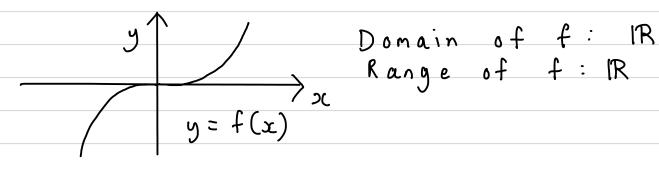


The domains of sinh x, cosh x and tanh x are all equal to R: all the real numbers. There are no intervals where they are not defined, as none of their definitions involve prohibited operations such as division by zero.

Composition of two functions

Let both f and g be functions of real variables. Their composition is a rule that assigns a value z in the range of g to each value x in the domain of f: y = f(x), z = g(y) $g \circ f(x) = g(f(x))$

Escample
$$f(x) = x^3$$
, $g(y) = |y|$
Then, $h(x) = g \circ f(x) = |f(x)| = |x^3|$



$$y = h(x) = g \circ f(x)$$

$$= |x|^3$$

Complex numbers

The solution of a quadratic equation
$$ax^2 + bx + c$$
 can be found using $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

If the term $b^2-4ac < 0$, we usually say that the quadratic has no (real) roots.

Example The formula above gives the roots of the quadratic equation

$$z^2 - 4z + 5 = 0$$
 as $2 \pm \sqrt{-4}$

 $z^2 - 4z + 5 = 0$ as $2 \pm \sqrt{-4}$.

However, if we define $i = \sqrt{-1}$, we can write these roots as

$$2 \pm \sqrt{-4} = 2 \pm 2\sqrt{-1} = 2 \pm \sqrt{-1} = 2 \pm i$$

This is an example of a complex number. It has a real part and an imaginary part.

More generally, we can write

a and b are the real and imaginary parts,

respectively, of z, often denoted by Re(z) and Im (z).

- If a = 0, then z is purely imaginary.

 If b = 0, then z is real.

 A complex number written as the sum of a real and an imaginary term is in standard form.
- We denote the set of all complex numbers by C, so that zeC.
 - Every quadratic equation has roots in C.

Addition and subtraction

- The real and imaginary parts are treated separately. - Example: If $z_1 = 2 + 3i$ and $z_2 = 1 - 2i$, then

$$z_1 + z_2 = (2+1) + (3-2)i = 3+i$$

and $z_1 - z_2 = (2-1) + (3-(-2))i = 1+5i$

Multiplication

- The essential fact to remember is that i2 = -1 (since i = \-1).

Example

With Z, and Zz as above, we have

$$z_1 z_2 = (2+3i)(1-2i)$$

= 2-4i+3i-6(i²)

$$= 2 - i - 6(-1)$$

$$= 2 - i + 6$$

$$= 8 - i$$

The Argand diagram

We often plot complex numbers on an Argand diagram:

the complex plane
$$\begin{cases} 1m(z) & z = a + ib \\ b & |z| \\ 0 & |z| \end{cases}$$

$$Re(z)$$

<u>Definitions</u> and <u>properties</u>

The complex conjugate of
$$z = a + ib$$
 is
$$\overline{z} = a - ib \quad (sometimes written z^* = a - ib)$$

- The modulus of z is $|z| = r = (a^2 + b^2)^{1/2}$

- We also have that $|z|^2 = z\overline{z}$, since $z\overline{z} = (a+ib)(a-ib)$

 $= a^2 - iba + iba - (i)^2 b^2$

 $= a^2 + b^2$

- The argument of z = a + ib is arg (z) = 0.

Note: the argument is not unique. An integer multiple of 2π can be added to 0 without changing z, as this just takes us back to the same point on the Argand diagram. Usually, we take $0 \le \theta \le 2\pi$.

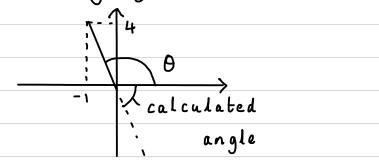
We also have that
$$\Theta = \tan^{-1}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right) = \tan^{-1}\left(\frac{b}{a}\right)$$

Example With
$$z = \sqrt{3} + i$$
, we have that $\bar{z} = \sqrt{3} - i$
 $|z| = r = [(\sqrt{3})^2 + 1^2]^{1/2} = 2$
 $arg(z) = tan^{-1}(1/\sqrt{3}) = \pi/6$

Note: it is important to renember that calculating of from tan-'(b/a) can give an answer in the wrong quadrant. It can be useful to sketch an Argand diagram to make sure that you have calculated the correct angle.

Example With z = -1 + 4i, we have that $\tan^{-1} \left[4/(-1) \right] \approx -1 - 3258$ rad.

However, drawing an Argand diagram shows that this lies in the wrong quadrant:



We can move into the correct quadrant by adding to our result, giving $\theta \approx 1.8158$ rad.

Division

The complex conjugate introduced above is important in division. For example, to calculate

the quotient

we multiply the numerator + denominator by the complex conjugate of the denominator, 4-3i.

This gives
$$(7-4i)(4-3i) = 28-37i-12 = 16 - 37i$$

 $(4+3i)(4-3i) = 16+9 = 25$

The fact that $z\bar{z}=a^2+b^2$ has allowed us to make the denominator entirely real and write the quotient in standard form.

Polar form of complex numbers

From the Argand diagram, we can see that

$$Z = \Gamma \cos \theta + i r \sin \theta$$

= $\Gamma (\cos \theta + i \sin \theta)$

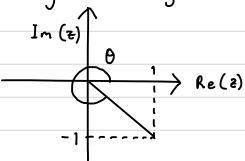
This is the polar form of a complex number.

Example Write z = 1-i in polar form.

- (1) Calculate the modulus, $|z| = r = \left[1^2 + 1^2\right]^{1/2} = \sqrt{2}$
- 2 Calculate 0 = tan-1 (b/a) = tan-1 (-1/1)

=
$$\tan^{-1}(-1) = \frac{3\pi}{4}$$
 or $\frac{7\pi}{4}$

3) Draw an Argand diagram...



... to see that
$$\theta = \frac{7\pi}{4}$$

The polar form of z is then

$$z = \sqrt{2} \left[\cos(7\pi/4) + i \sin(7\pi/4) \right]$$

Exponential form of a complex number

Recall: the exponential, sine and cosine functions can be written as power series:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3} + \cdots}{3!}$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5} - \cdots}{5!}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4} - \cdots}{4!}$$

If we define
$$e^{i\theta} = 1 + i\theta + (i\theta)^2 + (i\theta)^3 + (i\theta)^4 + \cdots$$

then
$$e^{i\theta} = 1 + i\theta + \frac{i^2 \theta^2}{2!} + \frac{i^3 \theta^3}{3!} + \frac{i^4 \theta^4}{4!} + \cdots$$

$$= \frac{1 + i\theta - \theta^2 - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + \cdots}{2!} + \frac{\theta^4}{3!} + \frac{\theta^4}{4!} + \cdots$$

$$= \left(\frac{1 - \theta^2}{2!} + \frac{\theta^4}{4!} - \cdots\right) + i\left(\frac{\theta - \theta^3}{3!} + \cdots\right)$$

$$= \cos\theta + i\sin\theta$$

Euler's identity

This gives us another representation of a complex number: the exponential form

$$z = re^{i\theta}$$
, with $e^{i\theta} = \cos\theta + i\sin\theta$

Note: $|e^{i\theta}| = \left[(\cos\theta + i\sin\theta)(\cos\theta - i\sin\theta) \right]^{1/2}$ $= \left[\cos^2\theta + \sin^2\theta \right]^{1/2} = 1$

and eigrepresents all points on a circle of unit radius in the Argand diagram.