MTH1001M-Algebra

Slides Week 1

Divisibility in the integers.

The greatest common divisor.

Euclid's algorithm.

Divisibility in the integers ($\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$)

- What does it mean that an integer b divides an integer a?
 3 divides 6 because 6/3 = 2, an integer.
 However, it is better to avoid fractions and say
 3 divides 6 because 6 = 3 · 2.
- DEFINITION. Let $a, b \in \mathbb{Z}$. We say that b divides a, and we write $b \mid a$, if there exists (at least one) $c \in \mathbb{Z}$ such that $a = b \cdot c$.
- One can also say: b is a divisor of a; b is a factor of a;
 a is a multiple of b; a is divisible by b.
- Hence $4 \nmid 6$, because there is no $c \in \mathbb{Z}$ such that $6 = 4 \cdot c$.
- Do not mix up | (divides) with a fraction sign / (divided by):
 3 | 6 is a statement (true in this case);
 6/3 is an operation (possible here, and giving 2 as the result).

• Hence the integer b divides the integer a when the equation

$$a = bc$$

has a solution c in the integers (meaning at least one). Hence 2 divides 6 because the equation 6 = 2c has a solution c = 3.

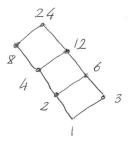
- $b \mid a$ is equivalent with a/b being an integer, but only for $b \neq 0$.
- So although 0/0 makes no sense, $0 \mid 0$ is true, because $0 = 0 \cdot 1$ (or $0 = 0 \cdot 3$, or $0 = 0 \cdot 0$, etc.; *c exists* but need not be *unique*).
- The same fact $6 = 2 \cdot 3 = 3 \cdot 2$ tells us that $3 \mid 6$ and that $2 \mid 6$. Any divisor b of a has a matching divisor a/b (possibly = b, if $a = b^2$).
- For $a \in \mathbb{Z}$ we write

$$D(a) = \{x \in \mathbb{Z} : x \mid a\},\$$

the set of divisors of a. Note that if $b \in D(a)$ then $-b \in D(a)$ as well, and also D(-a) = D(a) for every a.

(This is because
$$a = bc \iff a = (-b)(-c) \iff -a = b(-c)$$
.)

• EXAMPLE. $D(24) = \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24\}$. Found by factorising $24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3$, and better arranged as

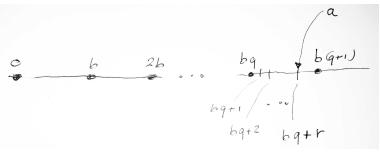


- ullet This is a *Hasse diagram*: lines indicate that the number below divides the one above. We have omitted the \pm signs for simplicity.
- For $120 = 2^3 \cdot 3 \cdot 5$, the Hasse diagram would look best in three dimensions, but we just draw a projection on the plane.

- EXAMPLE. Every $b \in \mathbb{Z}$ divides 0, because $0 = b \cdot 0$, so $D(0) = \mathbb{Z}$.
- EXAMPLE. If 0 divides a, then $a = 0 \cdot c = 0$ for some c, and so a = 0. Hence the only integer $a \in \mathbb{Z}$ such that $0 \in D(a)$ is a = 0.
- Note that $b \mid a$ implies $b \le a$ in the positive integers (but not in \mathbb{Z}). Here is a formal proof: if a = bc and a, b > 0, then c > 0, but then being an integer $c \ge 1$, and so $a = bc \ge b \cdot 1 = b$.
- Hence if b | a and a | b for positive integers, then a = b.
 For arbitrary integers, b | a and a | b imply only a = ±b.

Division with remainder in the integers

• THEOREM (Standard division). Given two integers a, b, with b > 0, there exist unique $q, r \in \mathbb{Z}$ such that $a = b \cdot q + r$, with $0 \le r < b$.



- q and r are unique only because we ask $0 \le r < b$:
 - ▶ bigger range (such as $0 \le r \le b$) and we lose uniqueness
 - ightharpoonup smaller range (such as 0 < r < b) and we lose existence

- Notations in use to express the result of dividing a = 14 by b = 4:
 - ▶ $14 = 4 \cdot 3 + 2$ [best for us, it says what it means]
 - ▶ The quotient is 3 and the remainder is 2 [good]
 - q = 3 and r = 2 [OK]
 - ▶ 14 : 4 = 3 r 2 [common in school but misleading, it may let you think that 14 : 4 = 3, which is false; best avoid this]
 - ▶ $\frac{14}{4} = 3 + \frac{2}{4}$ [not optimal as it uses rational numbers and not just integers; however, mathematically correct and useful to know]
- EXAMPLE. Dividing a=-13 by b=5 gives quotient q=-3 and remainder 2, because $-13=5\cdot(-3)+2$, and $0\le 2<5$. (Not $-13=5\cdot(-2)-3$, as the remainder cannot be negative.)

- The theorem extends to $b \neq 0$ but needs a further change:
- THEOREM. Given two integers a, b, with $b \neq 0$, there exist unique $q, r \in \mathbb{Z}$ such that $a = b \cdot q + r$, with $0 \leq r < |b|$.
- COROLLARY. Let $a,b\in\mathbb{Z}$ with $b\neq 0$. The following assertions are equivalent:
 - b divides a;
 - 2 the remainder of the division of a by b is zero.
- PROOF. [(1) ⇒ (2)] If b divides a then a = b · c = b · c + 0 for some c. Because of uniqueness, the remainder must be zero.
 [(1) ← (2)] Conversely, if r = 0, then a = b · q + r = b · q, and hence b divides a.

Division with remainder on a pocket calculator

The conditions

$$a = b \cdot q + r$$
 and $0 \le r < b$

are equivalent to

$$\frac{a}{b} = q + \frac{r}{b}$$
, and $0 \le \frac{r}{b} < 1$,

so $q = \lfloor a/b \rfloor$ is the integer part of the rational number a/b, and r/b is the fractional part of a/b.

 EXAMPLE. Here is how to divide 95376 by 271 on a (basic!) pocket calculator, with minimal typing:

You type in	The screen shows	Make note of
95376 ÷ 271 =	351.94095	351 (the quotient)
-351 =	0.94095	
×271 =	254.99745	255 (the remainder)

9/19

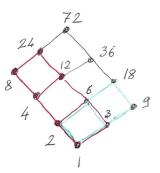
The greatest common divisor (as from school)

- Here is the school definition. Let a, b > 0 be integers. An integer
 d is called the greatest common divisor of a and b if
 - oddivides a and b, and
 - 2 if c is any integer which divides both a and b, then $c \le d$.
- This definition of GCD does not generalise well to Z, or to polynomials, etc. For example, when a = b = 0, the divisors of 0 (and 0) are all the integers, and there is no greatest integer.
- The school's rule to find the GCD of a and b is:
 - find the complete factorisations of a and b (as products of powers of distinct primes);
 - then the GCD equals the product of all common prime factors of a and b, each raised to the lower exponent.

• EXAMPLE. Let a = 24 and b = 18. Factorise a and b fully:

$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3$$
 $18 = 2 \cdot 3 \cdot 3 = 2 \cdot 3^2$

The school's rule tells us that their GCD is $2 \cdot 3 = 6$, and also that the least common multiple is $2^3 \cdot 3^2 = 72$.



- The common divisors of 24 and 18 are precisely the divisors of 6, so $D(24) \cap D(18) = D(6) = \{\pm 1, \pm 2, \pm 3, \pm 6\}.$
- Important: All common divisors 1, 2, 3, 6 are not just ≤ 6 (as in the school def. of GCD) but they actually divide 6.
- ▶ Replacing $c \le d$ with $c \mid d$ will give us a more useful definition of GCD.

11/19

The greatest common divisor (a better definition)

- DEFINITION (Greatest common divisor). Let $a, b \in \mathbb{Z}$. An integer d is called a *greatest common divisor* of a and b (or GCD in short) if
 - oddivides a and b, and
 - 2 if c is any integer which divides both a and b, then $c \mid d$.
- A GCD of a and b is denoted gcd(a, b), or more simply (a, b).
- So requirement (2) is stronger than in the school def. (for c>0): the GCD is not just greatest in the sense of \leq , but rather of \mid . Hence one can draw stronger consequences from this definition.
- However, the GCD is now not unique (no big deal): if d is a GCD of a and b, then -d is another GCD, but there are no more GCDs.
- The GCD of 0 and any integer a now exists, and equals a, because $D(0) \cap D(a) = D(a)$. Including when a = 0.

- The school's rule for finding the GCD works because of the unique factorisation of any integer into a product of prime numbers:
- unique factorization implies that all positive divisors of, say, $200 = 2^3 \cdot 5^2$, are precisely the integers of the form $2^i \cdot 5^j$, with $0 \le i \le 3$ and $0 \le j \le 2$. (This explains the Hasse diagram.)
- The school's rule is not practical for large numbers, because factorisation into products of primes is a hard computational problem: security of some widely used cryptography relies on that.
- We will now see a much better method to compute GCD's, the Euclidean algorithm, which is very fast even applied (by computer) to the huge numbers which occur in cryptographical applications.

The Euclidean algorithm (or Euclid's algorithm)

• EXAMPLE. We compute the GCD of a = 78 and b = 33, using the Euclidean algorithm, which is the following sequence of divisions:

$$78 = 33 \cdot 2 + 12$$

 $33 = 12 \cdot 2 + 9$
 $12 = 9 \cdot 1 + 3$
 $9 = 3 \cdot 3 + 0$

- ▶ The first step is dividing a by b with remainder r: a = bq + r.
- ▶ Discard *a*, let *b* and *r* take the roles of *a* and *b*, and divide again.
- Continue until a division has remainder zero. The remainder of the previous division (hence the last nonzero remainder) is the GCD of a and b, so in this case the GCD is (78, 33) = 3.
- ▶ Check: $78 = 2 \cdot 3 \cdot 13$ and $33 = 3 \cdot 11$. But we have not used that!
- ► Think of the list of remainders as 78, 33, 12, 9, 3, 0 (incl. a and b).

EXAMPLE. Compute the GCD of 59 and 22:

$$59 = 22 \cdot 2 + 15$$
$$22 = 15 \cdot 1 + 7$$
$$15 = 7 \cdot 2 + 1$$

Hence (59, 22) = 1.

- Note that when the Euclidean algorithm reaches a remainder 1 there is no need to write down the last division $7 = 1 \cdot 7 + 0$, because dividing by 1 can only give reminder 0.
- ▶ When two integers have greatest common divisor 1, as in this case, we say that they are *relatively prime*, or that they are *coprime*.
- ▶ Do not mix up being coprime with being prime: 59 is actually a prime but $22 = 2 \cdot 11$ is not. Two integers may be coprime without either being prime, for example $4 = 2^2$ and $15 = 3 \cdot 5$.

• EXAMPLE. Compute the GCD of 34 and 21:

$$34 = 21 \cdot 1 + 13$$

$$21 = 13 \cdot 1 + 8$$

$$13 = 8 \cdot 1 + 5$$

$$8 = 5 \cdot 1 + 3$$

$$5 = 3 \cdot 1 + 2$$

$$3 = 2 \cdot 1 + 1$$

Hence (34, 21) = 1, so 34 and 21 are coprime.

- ► Here the algorithm has been as slow as it can possibly be, because all quotients happened to be 1. This occurs exactly when the starting numbers *a* and *b* are consecutive Fibonacci numbers.
- ▶ Fibonacci numbers $F_0, F_1, ...$ are defined by the recurrence relation

$$F_n = F_{n-1} + F_{n-2}$$
 $(n \ge 2; F_0 = 0, F_1 = 1).$

16/19

The first ones are $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$

• EXAMPLE. Compute the GCD of 391 and 299:

$$391 = 299 \cdot 1 + 92$$

 $299 = 92 \cdot 3 + 23$
 $92 = 23 \cdot 4$

Hence (391, 299) = 23. (So 391 and 299 are not coprime.)

- In particular, we discover that 391 = 17 · 23 and 299 = 13 · 23 without previously factorising either number. Note that factorising 391 directly, for example, would have taken a while, because the standard procedure would be:
 - checking if 391 is divisible by 2: no (because last digit is odd);
 - checking if it is divisible by 3: no (3+9+1) not a multiple of 3);
 - checking if it is divisible by 5: no (last digit is not 0 or 5);
 - checking if it is divisible by 7: no (not so easy, just try division);
 - checking if it is divisible by 11: no (3-9+1) not a multiple of 11);
 - checking if it is divisible by 13: no (not so easy, just try division);
 - checking if it is divisible by 17, and finally finding that it is.

EXAMPLE. Compute the GCD of 2203 and 1987:

$$2203 = 1987 \cdot 1 + 216$$
$$1987 = 216 \cdot 9 + 43$$
$$216 = 43 \cdot 5 + 1$$

Hence (2203, 1987) = 1, so these two numbers are coprime.

- ▶ In this case both 2203 and 1987 happen to be prime numbers, hence of course their GCD is 1.
- ► However, we did not know that they are prime numbers (we did not need to, and the Euclidean algorithm does not tell us either).

- How long would it take to find (2203, 1987) by the school way?
 - ▶ We would try and factorise 1987, dividing it by 2, 3, 5, 7, 11, ...
 - ▶ Once found that 1987 is not divisible by 2, 3, 5, 7, 11, ..., 43, we can stop because 47, the next prime, is larger than $\sqrt{1987} \approx 44.5$.
 - ► Then 1987 must be prime: if not then it would be a product of at least two primes p, q (possibly equal, and possibly more than two), but we have just found that $p > \sqrt{1987}$ and $q > \sqrt{1987}$, hence $1987 \ge pq > \sqrt{1987} \cdot \sqrt{1987}$, which is impossible.
 - ► Knowing that 1987 is prime we need not factorize 2203: because 1987 does not divide 2203 we conclude (2203, 1987) = 1.
 - ► However, this procedure would have taken a long time, most of that to try and factorise 1987 (14 divisions, by 2, 3, ..., 43).
 - ▶ By contrast, the Euclidean algorithm gave us (2203, 1987) = 1 very quickly, but does not tell us that they are prime.
 - More generally, when the Euclidean algorithm on a and b tells us (a, b) = 1, it gives us no clue about the factorisations of a and b.