1. L'Hôpital's rule states that

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

where f'(x) is the derivative df(x)/dx. In the lectures and problem classes, we only applied this rule to cases where a was finite. By making a suitable change of variable, show that this formula can also be used to find limits as $x \to \infty$.

2. To evaluate

$$\lim_{x \to 0} \frac{3x^2 - 1}{x - 1}$$

by l'Hôpital's rule, we differentiate the numerator and denominator to obtain 6x/1, and then substitute x = 0. However, if we look at the original function, we see that as x approaches 0 the function approaches 1. Why does this discrepancy occur?

3. Evaluate the following limits:

(a)
$$\lim_{x\to 0} \frac{\cot x}{\cot 2x}$$

(b)
$$\lim_{x\to\infty}\frac{x^2}{e^x}$$
.

In part (b), can you say what would happen for higher powers of x?

(c)
$$\lim_{x \to \pi/2} \frac{\sec x + 1}{\tan x}$$

(d)
$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^n + b_1 x^{n-1} + \dots + b_n}$$
, for *n* a positive integer.

(e)
$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n}$$
, for $m < n$, m and n positive integers.

(f)
$$\lim_{x\to 0} x \cot x$$

(g)
$$\lim_{x \to \pi/2} \left(x - \frac{\pi}{2} \right) \tan x$$

(h)
$$\lim_{x\to 0+} x \ln x$$

4. Using the sandwich theorem, show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

5. Evaluate
$$\lim_{x \to \infty} \frac{\sqrt{4x^2 + 8} + 3}{5x + 3}$$
.

6. Find and classify the discontinuities of the following functions:

(a)
$$f(x) = \frac{a}{x}$$
 where a is a nonzero constant (b) $f(x) = \frac{x}{(x+4)(x-1)}$

(b)
$$f(x) = \frac{x}{(x+4)(x-1)}$$

(c)
$$f(x) = \frac{x^3 - 27}{x^2 - 9}$$

(d)
$$f(x) = [x] =$$
the greatest integer $\le x$

(e)
$$f(t) = \begin{cases} 0 & \text{if } t = 0 \\ 3 & \text{if } t \neq 0 \end{cases}$$

(f)
$$f(x) = \begin{cases} x & \text{if } x \le 0 \\ x^2 & \text{if } 0 < x < 1 \\ 2 - x & \text{if } x \ge 1 \end{cases}$$