Question 1 §
Question 1ai §
∫02πsin3(x)cos(x)dx
Using the substitution u=sinx, we get dx=cosxdu, thus the expression becomes…
∫01u3du=[41u4]01=41−0=41
Question 1aii §
∫02πcos2(x)dx
If we use the identity cos2θ≡2cos2θ−1, rearranged to be cos2θ≡21+cos2θ, then we can get the expression…
∫02π21+21cos(2θ)dx=[21x+41sin(2θ)]02π=4π−0=4π
Question 1bi §
∫03∫12x2y2dxdy=∫03[31x3y2]12dy=∫03(38y2−31y2)dy=∫0337y2dy=[97y3]03=927⋅7−0=21
Question 1bii §
∫01∫xxydydx=∫01[21y2]xxdx=∫01(21x−21x2)dx=21−21−0−0=0
Question 1c §
f(x,y)=x4−x2+y2
First, finding the partial derivatives in terms of x and y…
δxδf=4x3−2x,δyδf=2y
These are both equal to 0 when the function is stationary, therefore we have the system of simultaneous equations:
{x(4x2−2)=02y=0
Therefore, the stationary points are (0,0), (21,0), and (−21,0).
To now determine the nature of these points, we’ll calculate the second partial derivatives and then calculate D:
D=(∂x2∂2f)(∂y2∂2f)−(∂x∂y∂2f)2
These second partial derivatives are as follows:
∂x2∂2f=12x2−2,∂y2∂2f=2,∂x∂y∂2f=0
D=(∂x2∂2f)(∂y2∂2f)−(∂x∂y∂2f)2=(12x2−2)(2)−(0)=24x2−4
Using this determinant D, we can find the nature of the points based on the following:
- If D>0 and ∂x2∂2f>0, then (x0,y0) is a local minimum.
- If D>0 and ∂x2∂2f<0, then (x0,y0) is a local maximum.
- If D<0, then (x0,y0) is a saddle point.
- If D=0, the test is inconclusive.
Hence,
Saddle point:Local minima:(0,0)(21,0),(−21,0)
Question 2 §
Question 2ai §
Given the parametric curve where x=t2−1 and y=t3−3t,
dtdx=2t,dtdy=3t2−3
dxdy=dtdy⋅(dtdx)−1=2t3t2−3
If we repeat the process once more, then…
dt2d2x=2,dt2d2y=6t
dx2d2y=dt2d2y⋅(dt2d2x)−1=26t=3t
Question 2aii §
Converting the polar equation r=4cosθ to Cartesian then becomes…
r2=4rcosθ⟺x2+y2=4x⟺x2−4x+y2=0
(x−2)2+y2=22
Hence the centre of circle is (2,0) with radius 2.
Question 2b §
Finding the first four terms in the Taylor series of x about x=1,
Using the formula,
f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+⋯
We get the result:
f(x)=1+21x−21(x−1)−41x−23(x−1)2+83x−25(x−1)3−⋯
Question 2c §
To calculate the volume under a surface z=xy and above the region in the xy plane bounded y=x2 and y=2−x2 on the interval 0≤x≤1.
Formulating this into a mathematical expression…
\begin{align*}
V&=\int_{0}^{1}\int^\sqrt{2-x^{2}}_{x^{2}} (xy) dydx\\
&= \int_{0}^{1}\left[\frac{1}{2}xy^{2}\right]_{x^{2}}^\sqrt{2-x^{2}}dx\\
&= \int_{0}^{1}\left(\frac{1}{2}x(2-x^{2}) - \frac{1}{2}x^{5}\right)dx\\
&= \int_{0}^{1}x- \frac{1}{2}x^{3}- \frac{1}{2}x^{5}dx\\
&= \left[\frac{1}{2}x^{2}- \frac{1}{8}x^{4}- \frac{1}{12}x^{6}\right]_{0}^{1}\\
&= \frac{1}{2}- \frac{1}{8}- \frac{1}{12}\\
&= \frac{12}{24}- \frac{3}{24} - \frac{2}{24}\\
&= \frac{7}{24}
\end{align*}
Question 3 §
Question 3ai §
(1−i)(1+i)=12−i2=1+1=2+0i
Question 3aii §
1+i1−i=1+i1−i⋅1−i1−i=2(1−i)2=212−i2−2i=1−i
Question 3aiii §
(21+21i)20=(cos4π+isin4π)20=cos5π+isin5π=−1+0i
Question 3b §
x2z+y2z+2xy2−z3=0
We can use this to calculate the two partial derivatives, ∂x∂z and ∂y∂z.
2x∂x∂z+y2∂x∂z+2y2−3z2∂x∂z=0⟺∂x∂z=−2x+y2−3z22y2
x2∂y∂z+2y∂y∂z4xy−3z2∂y∂z=0⟺∂y∂z=x2+2y−3z21
Question 3c §
z4=23+21i=cos6π+isin6π
⟺z=exp(6π+2nπ)41=exp(46π+2nπ)=e24π,e2413π,e2425π,e2437π
Question 4 §
Question 4a §
f(t)=tlnt−t⟺f′(t)=lnt
g(t)=−2πtexp(−2t2)⟺g′(t)=2πt2exp(−2t2)
h(t)=t2+1t−1⟺h′(t)=t2+1(1)(t2+1)−(t−1)(2t)=t2+1−t2+2t+1
Question 4b §
u→3limu−3u2−u−6=u→3lim12u−1=5 by L’Hoptial’s Rule
x→0limln(x+1)x=x+11x=0
Question 4c §
f(x)=x2+x2
Question 4ci §
To find the vertical asymptote of the function, f(x), we must evaluate where the function tends to infinity: this is at x=0.
Question 4cii §
To find the local extremum of the function, we must first find its derivative and solve it when equal to zero,
f′(x)=2x−x22:f′(x)=0⟺x=1⟺y=3
To find the nature of this point, we’ll evaluate the second derivative at that point,
f′′(x)=2+x34:f′′(1)=6>0∴local minimum at (1,3)
Question 4ciii §
The function is increasing when the first derivative is greater than zero, and is decreasing when the first derivative is less than zero, hence…
f′(x)=2x−x22:{f′(x)<0⟺x<1f′(x)>0⟺x>1
Therefore, the function is decreasing on x<0 and 0<x<1, and increasing x>1.