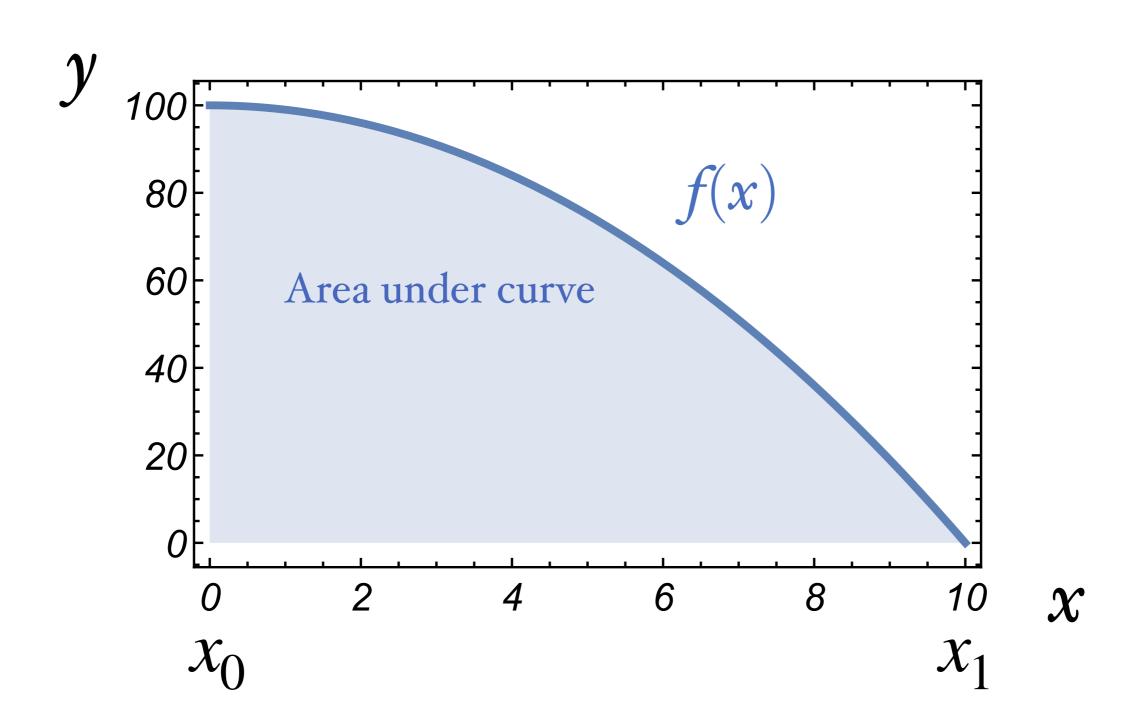
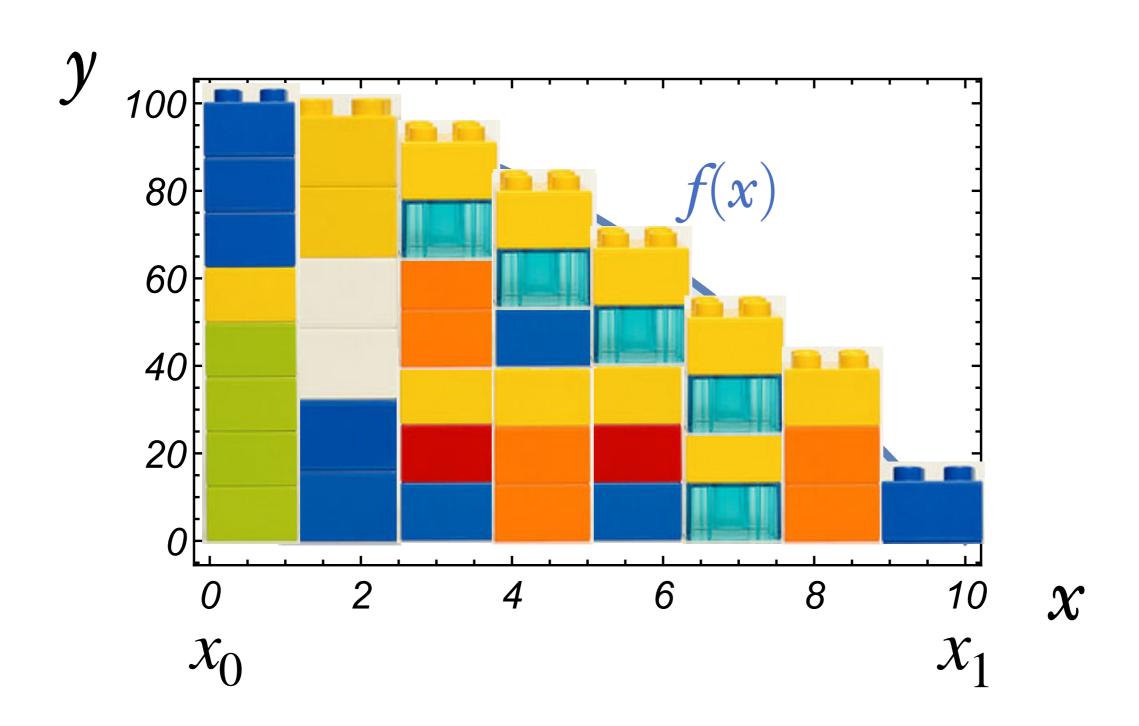
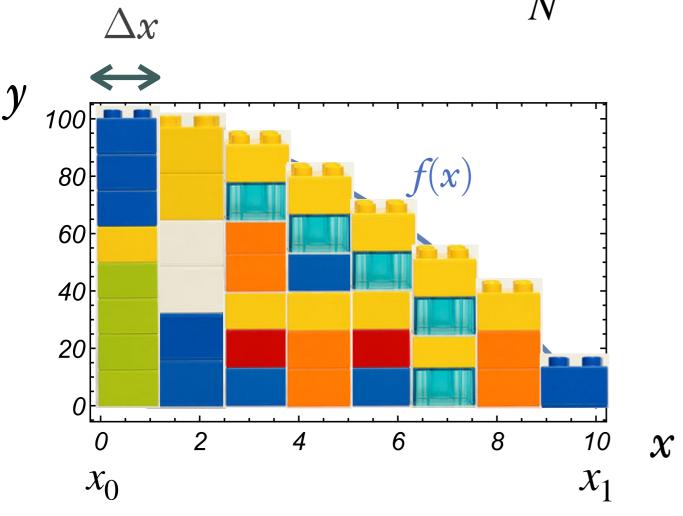
Additional notions of calculus

Riemann integral

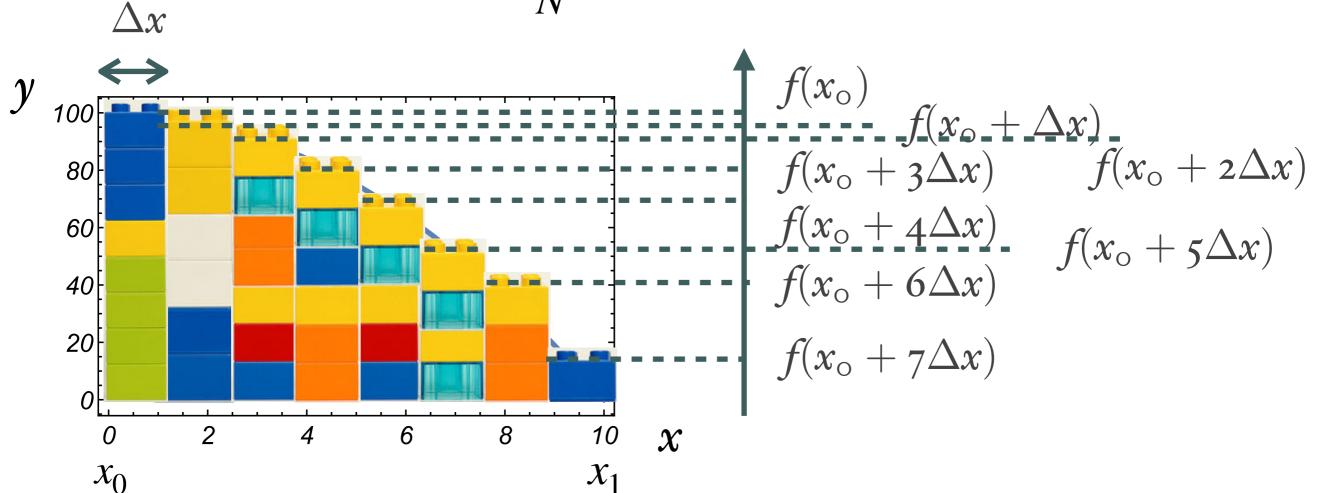




 $\Delta x = \frac{x_1 - x_0}{N}$, where *N* is the number of rectangles



 $\Delta x = \frac{x_1 - x_0}{N}$, where *N* is the number of rectangles



Area of the k+1 rectangle (height x width): $f(x_0 + k\Delta x)\Delta x$.

We set
$$A_N[f](x_0, x_1) = \sum_{k=0}^{N-1} f(x_0 + k\Delta x) \Delta x$$
 (*Riemann sum*)

Riemann integral and the fundamental theorem of calculus

Let f be a continuous function on $[x_0, x_1]$ and F a primitive function of f in $[x_0, x_1]$. Then

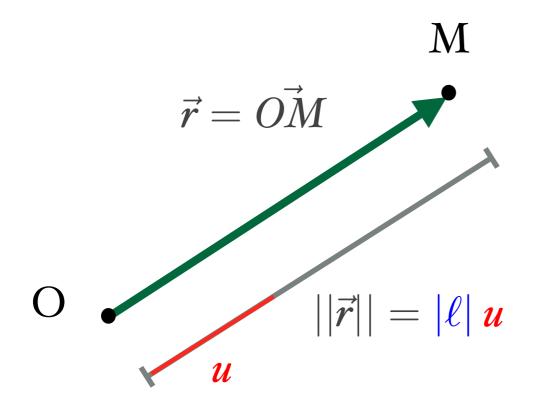
$$\stackrel{\searrow}{\searrow} \int_{x_0}^{x_1} f(x) dx = \lim_{N \to \infty} A_N[f](x_0, x_1) \quad (Riemann \ or \ definite \ integral)$$

$$\int_{x_0}^{x_1} f(x)dx = F(x_1) - F(x_0)$$

Introduction to kinematics in 2D

Representation of a point in 2D

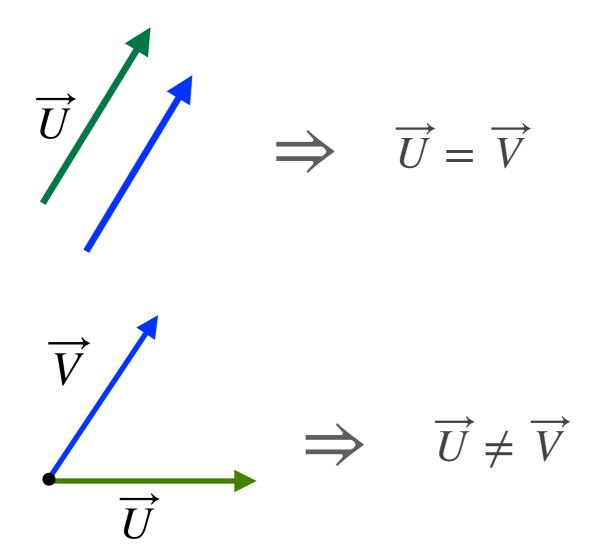
In 2D the position of a point M relative to a reference point O is identified by a position vector $\vec{r} = \overrightarrow{OM}$.



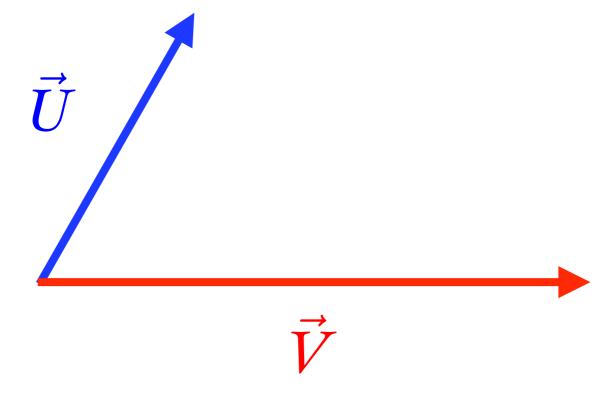
The position vector has a *magnitude* or *norm* $||\vec{r}||$ associated to a positive number $|\ell|$ related to some length unit u = cm, inches, feet, etc...

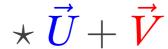
Contrary to 1D not all position vectors are proportional to each others!

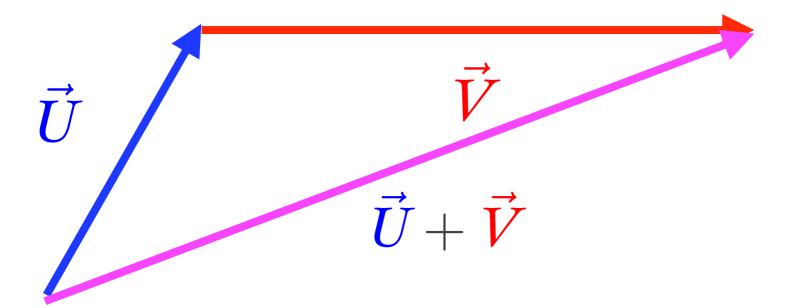
 $\overrightarrow{U} = \overrightarrow{V}$ if and only if $||\overrightarrow{U}|| = ||\overrightarrow{V}||$ and \overrightarrow{U} , \overrightarrow{V} point in the same direction along parallel lines.



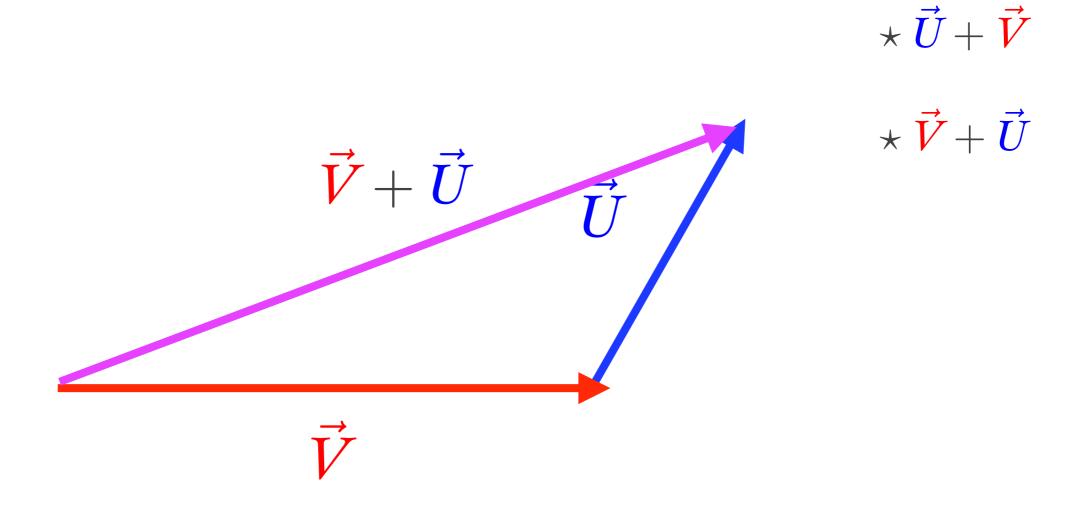
$$\star \, ec{U} + ec{V}$$



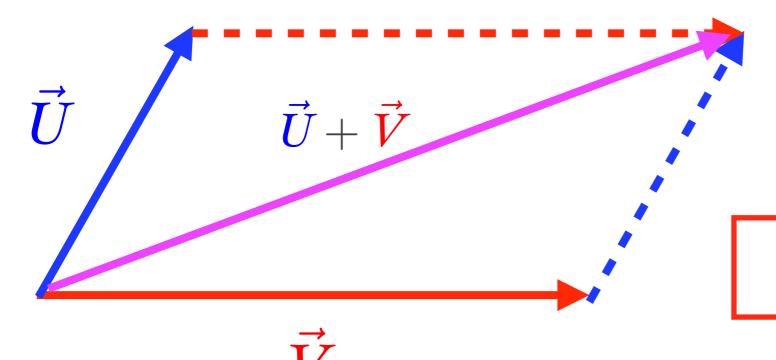








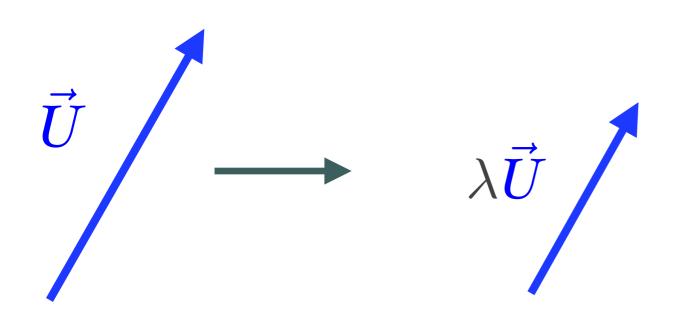
$$\star \, ec{U} + ec{V}$$



$$\star \vec{V} + \vec{U}$$

$$ec{m{U}} + ec{m{V}} = ec{m{V}} + ec{m{U}}$$

Multiplication by a real number



* Keep the orientation

$$_{*}\left|\left|\lambda\vec{\boldsymbol{U}}\right|\right|\equiv\left|\lambda\right|\times\left|\left|\vec{\boldsymbol{U}}\right|\right|$$

* Same direction if

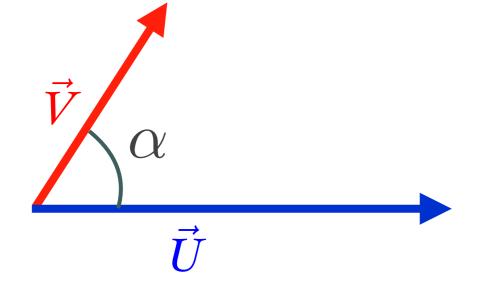
$$\lambda > 0$$

* Opposite direction if

$$\lambda < 0$$

Scalar product

$$\vec{U} \cdot \vec{V} = ||\vec{U}|| \times ||\vec{V}|| \cos \alpha$$
 (scalar quantity)

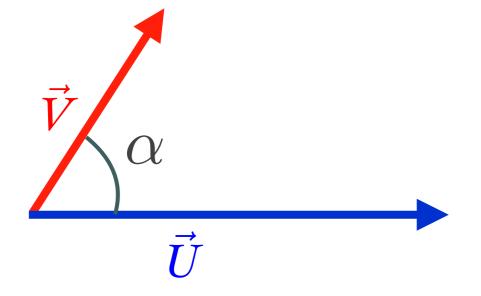


$$ec{V} \cdot ec{U} = ec{U} \cdot ec{V}$$

$$||ec{m{U}}|| = \sqrt{ec{m{U}} \cdot ec{m{U}}}$$

Scalar product

$$\vec{U} \cdot \vec{V} = ||\vec{U}|| \times ||\vec{V}|| \cos \alpha$$
 (scalar quantity)



$$ec{V} \cdot ec{U} = ec{U} \cdot ec{V}$$

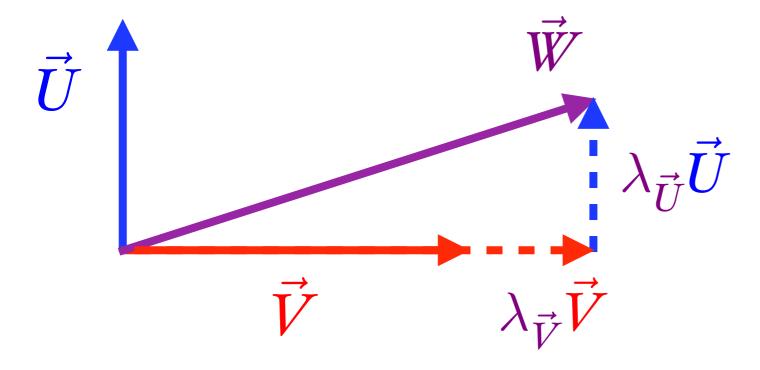
$$||ec{m{U}}|| = \sqrt{ec{m{U}} \cdot ec{m{U}}}$$

- Two vectors \overrightarrow{U} and \overrightarrow{V} are said to be **orthogonal** or perpendicular if $\overrightarrow{U} \cdot \overrightarrow{V} = 0$, i.e. $\alpha = \frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$.
- Two vectors \overrightarrow{U} and \overrightarrow{V} are said to be **collinear** or parallel if $\overrightarrow{U} \cdot \overrightarrow{V} = \pm ||\overrightarrow{U}|| ||\overrightarrow{V}||$, i.e. $\alpha = n\pi, n \in \mathbb{Z}$.

Basis and components

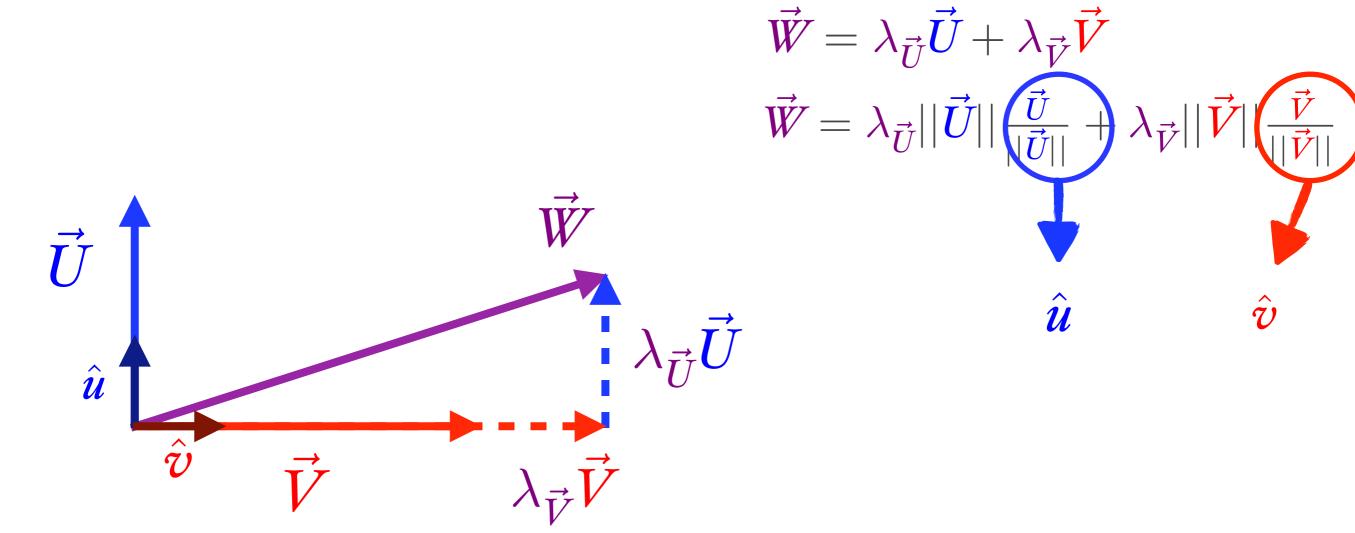
By the parallelogram rule, any vector in the plane can be written as the sum of two non-parallel vectors. It is in particular true with perpendicular vectors:

$$\begin{split} \vec{W} &= \lambda_{\vec{U}} \vec{U} + \lambda_{\vec{V}} \vec{V} \\ \vec{W} &= \lambda_{\vec{U}} ||\vec{U}||_{||\vec{U}||} + \lambda_{\vec{V}} ||\vec{V}||_{||\vec{V}||} \end{split}$$



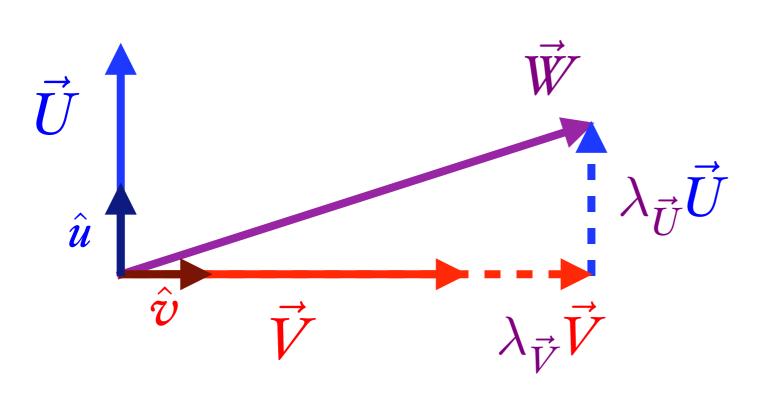
Basis and components

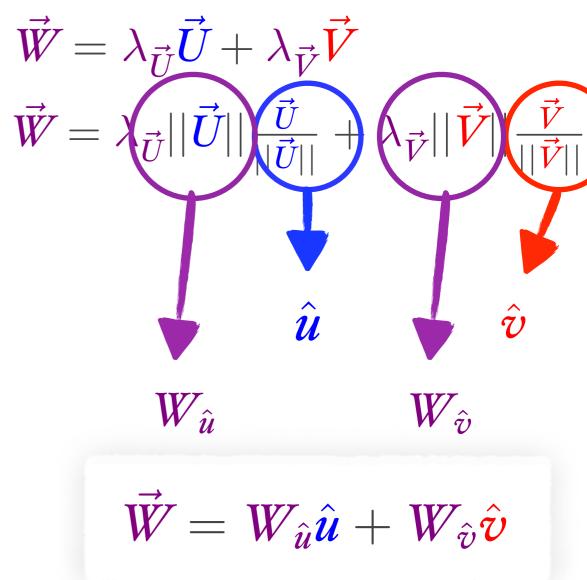
By the parallelogram rule, any vector in the plane can be written as the sum of two non-parallel vectors. It is in particular true with perpendicular vectors:



Basis and components

By the parallelogram rule, any vector in the plane can be written as the sum of two non-parallel vectors. It is in particular true with perpendicular vectors:

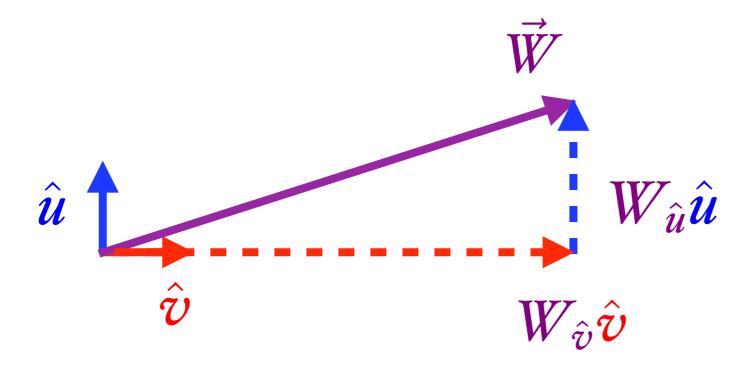




Basis and components

$$ec{W} = W_{\hat{u}} \, \hat{ extbf{u}} + W_{\hat{v}} \, \hat{ extbf{v}}$$

- The pair (\hat{u}, \hat{v}) with $\hat{u} \perp \hat{v}$ and $||\hat{u}|| = ||\hat{v}|| = 1$, is called an *orthonormal basis*.
- The numbers $W_{\hat{u}}$ and $W_{\hat{v}}$ are called the *components* of \hat{W} .



Vector algebra in terms of components

All the vector operations can be implemented with components

• If
$$\vec{W} = W_{\hat{u}} \, \hat{\boldsymbol{u}} + W_{\hat{v}} \, \hat{\boldsymbol{v}}$$
 and $\vec{Z} = Z_{\hat{u}} \, \hat{\boldsymbol{u}} + Z_{\hat{v}} \, \hat{\boldsymbol{v}}$

Addition:
$$\vec{W} + \vec{Z} = (Z_{\hat{u}} + W_{\hat{u}}) \hat{\boldsymbol{u}} + (W_{\hat{v}} + Z_{\hat{v}}) \hat{\boldsymbol{v}}$$

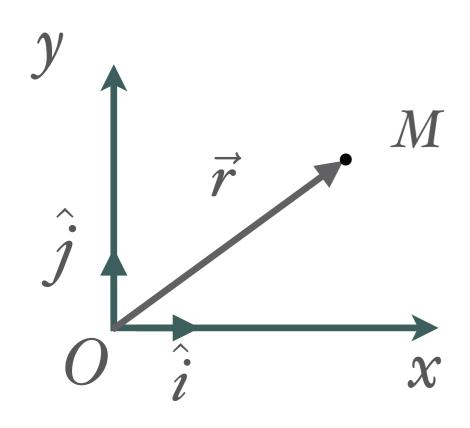
$$\lambda \vec{W} = \lambda W_{\hat{u}} \, \hat{\mathbf{u}} + \lambda W_{\hat{v}} \, \hat{\mathbf{v}}$$

Scalar product:
$$\vec{W} \cdot \vec{Z} = W_{\hat{u}} Z_{\hat{u}} + W_{\hat{v}} Z_{\hat{v}}$$

Norm:
$$||\vec{W}|| = \sqrt{|\vec{W} \cdot \vec{W}|} = \sqrt{|W_{\hat{u}}|^2 + |W_{\hat{v}}|^2}$$

Kinematics in 2D

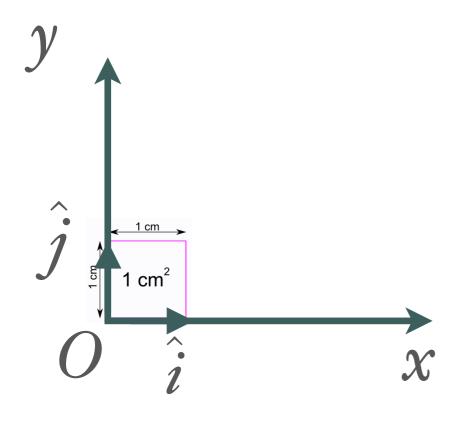
Given a *frame* consisting of an orthonormal basis (\hat{i}, \hat{j}) and an origin O, the position of a point M relative to the origin is characterised by its position vector $\vec{r} = OM$ in this frame



$$\vec{r} = x \,\hat{i} + y \,\hat{j}$$

The components x and y of \vec{r} in the frame $(0, \hat{i}, \hat{j})$ are called the (cartesian) **coordinates** of M

Example 1

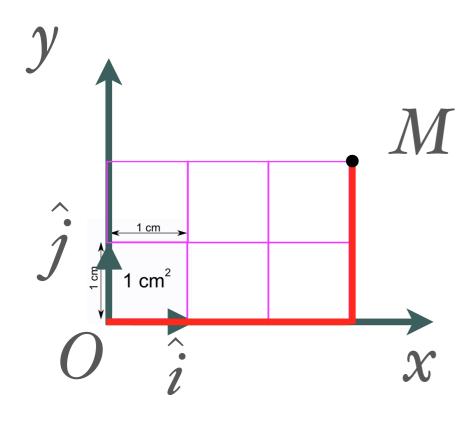


Given the position vector below

$$\vec{r} = (3 \text{ cm}) \hat{i} + (2 \text{ cm}) \hat{j}$$

find the position of the corresponding point M on the graph.

Example 1

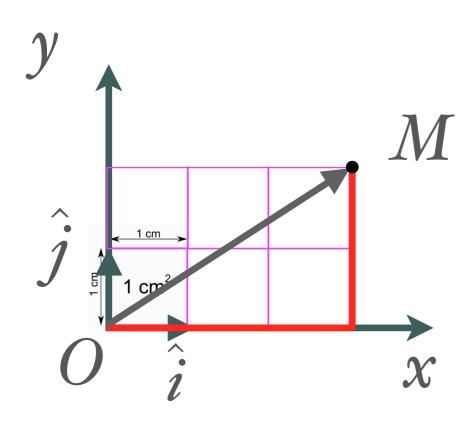


Given the position vector below

$$\vec{r} = (3 \text{ cm}) \hat{i} + (2 \text{ cm}) \hat{j}$$

find the position of the corresponding point M on the graph.

Example 1

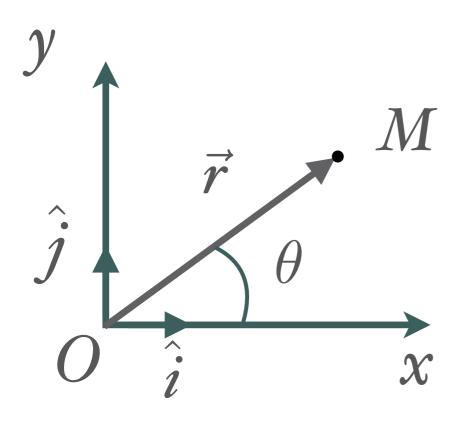


Given the position vector below

$$\vec{r} = (3 \text{ cm}) \hat{i} + (2 \text{ cm}) \hat{j}$$

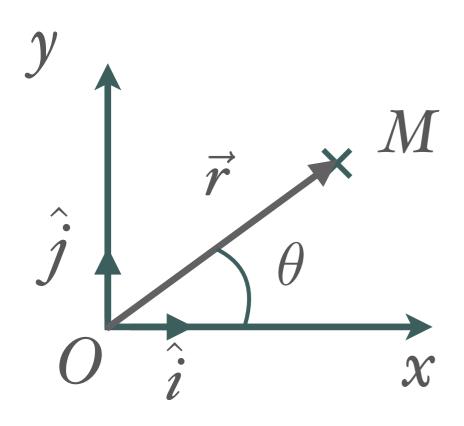
find the position of the corresponding point M on the graph.

Example 2



Given that $||\vec{r}|| = 4$ cm and $\theta = \pi/4$ rad, find the coordinates of M in the frame $(0, \hat{i}, \hat{j})$.

Example 2



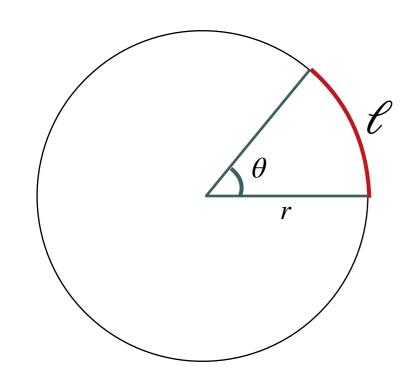
Given that $||\vec{r}|| = 4$ cm and $\theta = \pi/4$ rad, find the coordinates of M in the frame $(0, \hat{i}, \hat{j})$.

Answer: the coordinates are the components of $\vec{r} = x\hat{i} + y\hat{j}$, with

$$x = \vec{r} \cdot \hat{i} = ||\vec{r}|| \cos \theta = 2\sqrt{2} \text{ cm}$$
$$y = \vec{r} \cdot \hat{j} = ||\vec{r}|| \sin \theta = 2\sqrt{2} \text{ cm}$$

A quick word on the dimension of an angle

The arc length ℓ of a circle is $\ell = r\theta$, where r is the radius of the circle and θ the corresponding angle in **radians**.



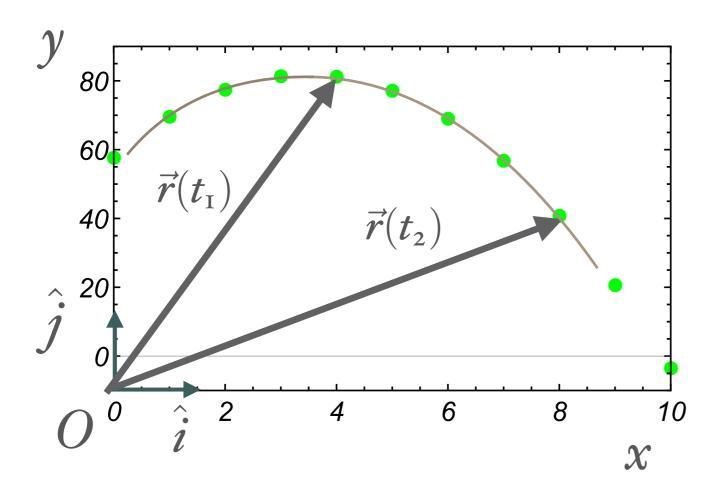
$$\theta = \frac{\ell}{r} \text{. So, } [\theta] = \frac{[\ell]}{[r]} = \frac{L}{L} = 1,$$

i.e., the angle θ is dimensionless.

Hence, we will consider any angle θ dimensionless and correspondingly $[\cos\theta] = [\sin\theta] = 1$.

Average velocity

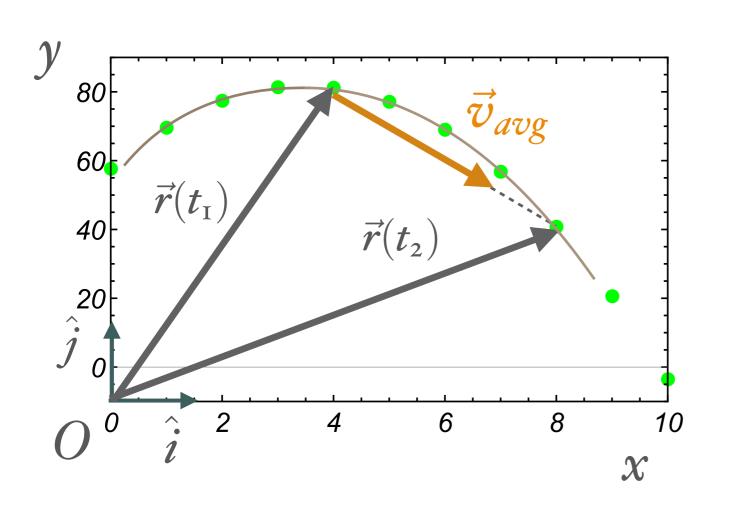
The trajectory of a point object can be represented by its vector position as a function of time $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$.



Average velocity

The trajectory of a point object can be represented by its vector position as a function of time $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$.

The average velocity of point M between t_1 and t_2 is the vector:



$$\vec{v}_{avg} \equiv \frac{\vec{r}(t_2) - \vec{r}(t_1)}{t_2 - t_1}$$

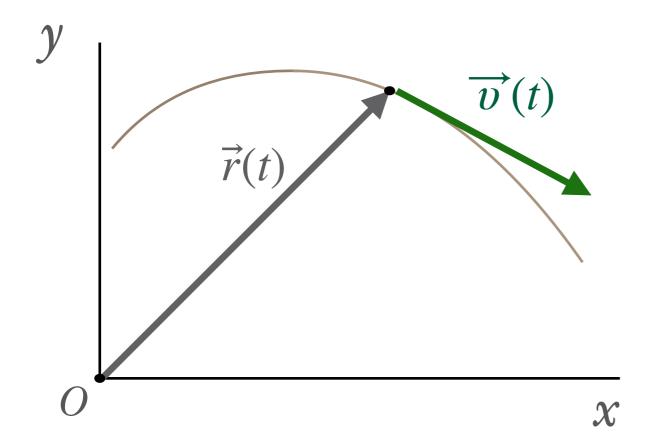
with components:

$$v_{x,avg} \equiv rac{x(t_2) - x(t_1)}{t_2 - t_1}$$
 $v_{y,avg} \equiv rac{y(t_2) - y(t_1)}{t_2 - t_1}$

Instantaneous velocity

The instantaneous velocity in 2D is defined as the vector

$$\vec{v}(t) \equiv \lim_{b \to 0} \frac{\vec{r}(t+b) - \vec{r}(t)}{b} = \dot{\vec{r}}(t)$$



$$\vec{v}(t) = v_x(t) \hat{i} + v_y(t) \hat{j}$$

with components:

$$v_{x}(t) = \dot{x}(t)$$

$$v_{y}(t) = \dot{y}(t)$$

Instantaneous velocity

Example

We consider the trajectory of a point object represented by the position vector $\vec{r}(t) = (2m) \ \hat{i} - (10 \ m/s^2) t^2 \ \hat{j}$. Find the instantaneous velocity at time t.

Instantaneous velocity

Example

We consider the trajectory of a point object represented by the position vector $\vec{r}(t) = (2m) \ \hat{i} - (10 \ m/s^2) t^2 \ \hat{j}$. Find the instantaneous velocity at time t.

Solution

$$\vec{v}(t) = \dot{\vec{r}}(t) = 0 \cdot \hat{i} - (20 \text{ m/s}^2) t \hat{j} = -(20 \text{ m/s}^2) t \hat{j}.$$

Acceleration

We consider a point object moving with velocity

$$v(t) = v_{x}(t)\hat{i} + v_{y}(t)\hat{j}$$

Average acceleration between t_1 and t_2 :

$$\overrightarrow{a}_{avg} = \frac{\overrightarrow{v}(t_2) - \overrightarrow{v}(t_1)}{t_2 - t_1} = \frac{v_x(t_2) - v_x(t_1)}{t_2 - t_1} \hat{i} + \frac{v_y(t_2) - v_y(t_1)}{t_2 - t_1} \hat{j}$$

Instantaneous acceleration at t:

$$\overrightarrow{a}(t) = \lim_{h \to 0} \frac{\overrightarrow{v}(t+h) - \overrightarrow{v}(t)}{h} = \overrightarrow{v}(t) = \dot{v}_{x}(t)\hat{i} + \dot{v}_{y}(t)\hat{j}$$

Instantaneous acceleration

Example

We consider the trajectory of a point object represented by the position vector $\vec{r}(t) = (2m) \hat{i} - (10 \text{ m/s}^2)t^2 \hat{j}$. Find the instantaneous acceleration at time t.

Solution

$$\vec{v}(t) = \dot{\vec{r}}(t) = 0 \cdot \hat{i} - (20 \text{ m/s}^2) t \hat{j} = -(20 \text{ m/s}^2) t \hat{j}.$$

Instantaneous acceleration

Example

We consider the trajectory of a point object represented by the position vector $\vec{r}(t) = (2m) \hat{i} - (10 \text{ m/s}^2)t^2 \hat{j}$. Find the instantaneous acceleration at time t.

Solution

$$\vec{v}(t) = \dot{\vec{r}}(t) = 0 \cdot \hat{i} - (20 \text{ m/s}^2) t \hat{j} = -(20 \text{ m/s}^2) t \hat{j}.$$

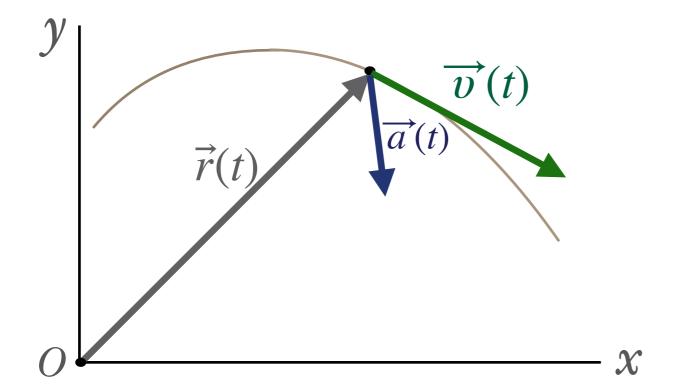
$$\overrightarrow{a}(t) = \overrightarrow{v}(t) = -(20 \text{ m/s}^2) \hat{j}.$$

Summary: position, velocity and acceleration

Position
$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$$

Velocity
$$\overrightarrow{v}(t) = \dot{\overrightarrow{r}}(t) = \dot{x}(t)\hat{i} + \dot{y}(t)\hat{j}$$

Acceleration
$$\vec{a}(t) = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = \ddot{\vec{x}}(t)\hat{i} + \ddot{y}(t)\hat{j}$$



The motion of a point object is said to be *uniformly accelerated* if at all time during the motion:

$$\vec{a}(t) = \vec{a}$$

where $\overrightarrow{a} = a_x \hat{i} + a_y \hat{j}$ is a constant vector.

The motion of a point object is said to be *uniformly accelerated* if at all time during the motion:

$$\vec{a}(t) = \vec{a}$$

where $\vec{a} = a_x \hat{i} + a_y \hat{j}$ is a constant vector.

For
$$\overrightarrow{a}(t) = a_x(t)\hat{i} + a_y(t)\hat{j}$$
 we derive

$$a_x(t) = a_x$$

$$a_y(t) = a_y$$

i.e. both components of the acceleration are constants.

In the case of uniformly accelerated motion we have:

$$a_x(t) = a_x$$

$$a_y(t) = a_y$$
 $\ddot{x}(t) = a_y$

$$\ddot{y}(t) = a_y$$

What happens in x-direction is independent of the y-direction

We literally just have to solve twice a 1D problem!

$$a_{x}(t)=a_{x}$$

$$a_{y}(t) = a_{y}$$

$$\ddot{x}(t) = a_x$$

$$\ddot{x}(t) = a_x$$
$$\ddot{y}(t) = a_y$$

vectors	$ec{v}(t) = v_{\scriptscriptstyle \mathcal{X}}(t) \hat{i} + v_{\scriptscriptstyle \mathcal{Y}}(t) \hat{j}$	$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$
\boldsymbol{x}	$v_x(t) = v_{x,0} + a_x t$	$x(t) = x_0 + v_{x,0} t + \frac{1}{2} a_x t^2$
y	$v_y(t) = v_{y,o} + a_y t$	$y(t) = y_\circ + v_{y,\circ} t + \frac{1}{2} a_y t^2$

The relativity of motion

How is motion relative?

Let us consider the simple example depicted below

Julie (left) and Alice (right) running

How is motion relative?

Let us consider the simple example depicted below

Julie (left) and Alice (right) running

How is motion relative?

Let us consider the simple example depicted below

Julie (left) and Alice (right) running

- * Although they are running Alice and Julie are not moving with respect to each other
- * They nevertheless move with respect to the stop sign

Relative motion in equation

* How could we express the fact that Alice and Julie do not move relative to each other?

Introduce the point objects A for Alice and J for Julie. It then follows that

$$\overrightarrow{AJ} = constant \text{ or } \overrightarrow{AJ} = o$$

Relative motion in equation

* How could we express the fact that Alice and Julie do not move relative to each other?

Introduce the point objects A for Alice and J for Julie. It then follows that

$$\overrightarrow{AJ} = constant \text{ or } \overrightarrow{AJ} = o$$

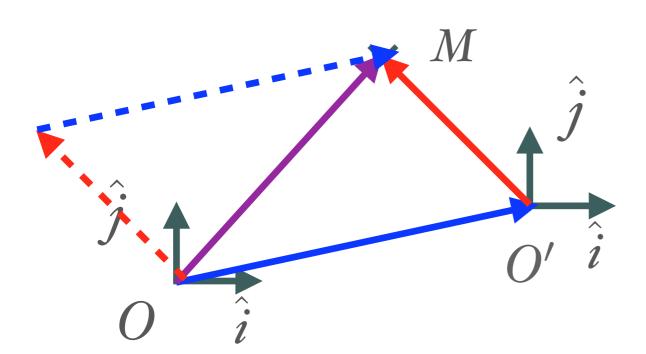
* How could we express the fact that Alice and Julie move however with respect to the stop sign?

Introduce the point object S for the stop sign. It then follows that

$$\overrightarrow{SA} \neq o \text{ and } \overrightarrow{SJ} \neq o$$

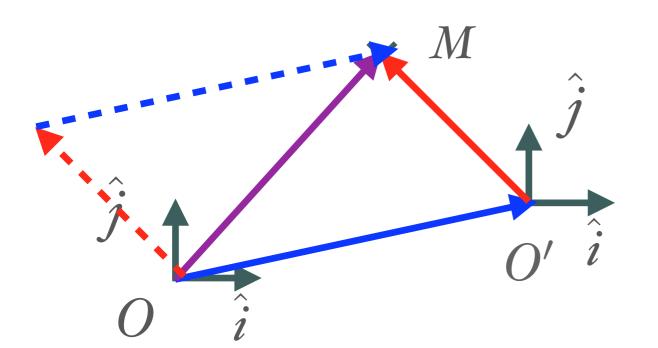
We consider two frames $\mathcal{F} = (O, \hat{i}, \hat{j})$ and $\mathcal{F}' = (O', \hat{i}, \hat{j})$ and the point object M

 $\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$



We consider two frames $\mathcal{F} = (O, \hat{i}, \hat{j})$ and $\mathcal{F}' = (O', \hat{i}, \hat{j})$

and the point object M



$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$$

The velocity and the acceleration of a point M relative to O is defined as

$$ec{v}(M|O) \equiv \overrightarrow{OM}$$
 $ec{a}(M|O) \equiv \dot{ec{v}}(M|O) = \overrightarrow{OM}$

We consider two frames $\mathcal{F} = (O, \hat{i}, \hat{j})$ and $\mathcal{F}' = (O', \hat{i}, \hat{j})$ and the point object M

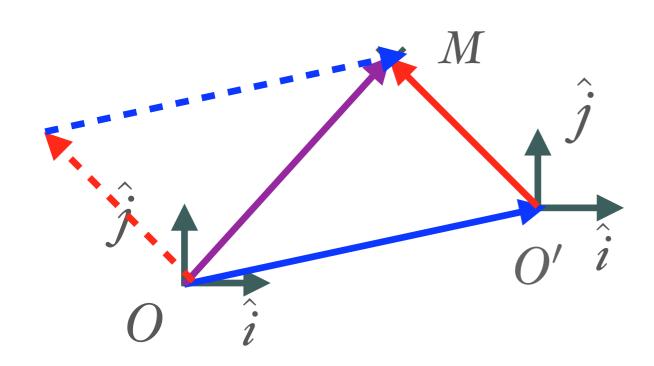
$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M}$$

The velocity and the acceleration of a point M relative to O is defined as

$$ec{v}(M|O) \equiv \overrightarrow{OM} \ ec{a}(M|O) \equiv \dot{ec{v}}(M|O) = \overrightarrow{OM} \ ec{a}(M|O) \equiv \dot{ec{v}}(M|O) = \overrightarrow{OM}$$

$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M} \longrightarrow \overrightarrow{v}(M|O) = \overrightarrow{v}(O'|O) + \overrightarrow{v}(M|O')$$

$$\overrightarrow{OM} = \overrightarrow{OO'} + \overrightarrow{O'M} \longrightarrow \overrightarrow{a}(M|O) = \overrightarrow{a}(O'|O) + \overrightarrow{a}(M|O')$$



Law of composition of velocities $\overrightarrow{v}(M|O) = \overrightarrow{v}(O'|O) + \overrightarrow{v}(M|O')$

Law of composition of accelerations $\overrightarrow{a}(M | O) = \overrightarrow{a}(O' | O) + \overrightarrow{a}(M | O')$

Relative motion

Example

Julie (left) and Alice (right) running

Let us suppose that the velocity of Julie relative to the stop is

$$\vec{v}(J|S) = (7 \text{ km} \cdot \text{h}^{-1}) \hat{i}$$

and that the velocity of Alice relative to Julie is zero.

Find the velocity and the acceleration of Alice relative to the stop.

Relative motion

Example

Julie (left) and Alice (right) running

Let us suppose that the velocity of Julie relative to the stop is

$$\vec{v}(J|S) = (7 \text{ km} \cdot \text{h}^{-1}) \hat{i}$$

and that the velocity of Alice relative to Julie is zero.

Find the velocity and the acceleration of Alice relative to the stop.

Solution

$$\vec{v}(A|S) = \vec{v}(A|J) + \vec{v}(J|S) = (7 \text{ km} \cdot \text{h}^{-1}) \hat{i}$$
$$\vec{a}(A|S) = \dot{\vec{v}}(A|S) = 0$$