MTH1001-Algebra

Slides Week 5

Tips for checking polynomial calculations.

Irreducible polynomials.

Finding roots and factorisations of quadratic polynomials.

Unique factorisation of polynomials.

The maximum number of roots of a polynomial.

Polynomial interpolation.

Complex roots: the Fundamental Theorem of Algebra.

Roots and factorisations of polynomials with real coefficients.

Tips for checking polynomial calculations

- It is very easy to do mistakes in doing polynomial calculations.
- An obvious way of checking a polyn. division is multiplying the second polyn. by the quotient and then add the remainder.
- A partial check is substituting numbers for *x* (choosing them easy).
 - EXAMPLE. Suppose we have found, by long division,

$$x^4 - 3x^2 + x - 5 = (x^2 + x + 3) \cdot (x^2 - x - 5) + (9x + 10).$$

▶ Now we do a few checks, substituting some numbers for *x*:

$$x = 0$$
: $-5 = 3 \cdot (-5) + 10$
 $x = 1$: $(1 - 3 + 1 - 5) = (1 + 1 + 3) \cdot (1 - 1 - 5) + (9 + 10)$
 $x = -1$: $(1 - 3 - 1 - 5) = (1 - 1 + 3) \cdot (1 + 1 - 5) + (-9 + 10)$

- A nonzero value for x is often enough to reveal a calc. error.
- ▶ In case of longer calculations, such as the ext. Eucl. alg., first check the final result, and then, if wrong, check each intermediate step.

Irreducible polynomials

- DEFINITION. A non-constant polynomial $f(x) \in F[x]$
 - ▶ is reducible in F[x] (or over F) if f(x) = g(x) h(x), for some g(x) and h(x) non-constant polynomials in F[x],
 - ▶ is *irreducible* (rather than *prime*) in F[x] if it is not reducible.
- Equivalently, a non-constant $f(x) \in F[x]$ is irreducible in F[x] if it has no *proper* divisors g(x) (that is, with $0 < \deg(g) < \deg(f(x))$).
- The constant polynomials are neither reducible nor irreducible.
- Polynomials of degree 1 are, clearly, always irreducible.
- EXAMPLE. $x^2 + 1$ is irreducible as a polynomial in $\mathbb{R}[x]$, but not as a polynomial in $\mathbb{C}[x]$, because $x^2 + 1 = (x i)(x + i)$.

Quadratic polynomials

- Finding the roots of $ax^2 + bx + c$ (with $a \neq 0$) is the same as finding the solutions of the equation $ax^2 + bx + c = 0$.
- Equivalent to $4a^2x^2 + 4abx = -4ac$.
 - completing the square we get $4a^2x^2 + 4abx + b^2 = b^2 4ac$,
 - which is $(2ax + b)^2 = b^2 4ac$.
- If the discriminant $\Delta = b^2 4ac$ is not a square in F (meaning it has no square root in F), then $ax^2 + bx + c$ has no root in F.
 - If Δ is a square in F, then $(2ax + b)^2 (\sqrt{\Delta})^2 = 0$, hence $(2ax + b \sqrt{\Delta}) \cdot (2ax + b + \sqrt{\Delta}) = 0$.
 - In this case $ax^2 + bx + c$ has roots given by the familiar formula $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$, which coincide when $b^2 4ac = 0$.
- $ax^2 + bx + c$ is reducible precisely when $b^2 4ac$ is a square in F.

- EXAMPLE. A quadratic polynomial $ax^2 + bx + c \in \mathbb{R}[x]$ (hence assuming $a \neq 0$) is irreducible exactly when $b^2 4ac < 0$.
- EXAMPLE. The polynomial x^2-2 is irreducible over \mathbb{Q} , but reducible over \mathbb{R} , because $x^2-2=(x-\sqrt{2})(x+\sqrt{2})$, and $\sqrt{2} \notin \mathbb{Q}$, which means that $\sqrt{2}$ is irrational (we'll see later why).
- EXAMPLE. Because any number in \mathbb{C} has square roots in \mathbb{C} , every quadratic polynomial in $\mathbb{C}[x]$ is reducible (and so it factorises as a product of two polynomials of degree one).

5/15

Unique factorisation for polynomials

- THEOREM. Every non-constant polynomial over a field F is a product of irreducible polynomials, in an essentially unique way.
- Essentially means the factorisation is only unique up to permuting factors and multiplying them by non-zero constants.
- EXAMPLE. $2x^2 + 10x + 12 = 2(x+2)(x+3) = (2x+4)(x+3) = (x+2)(2x+6) = (3x+6)(\frac{2}{3}x+2)$, and so on.
- EXAMPLE. In $\mathbb{Q}[x]$ (or $\mathbb{R}[x]$) we have

$$x^4 - 5x^2 + 4 = (x^2 - 1)(x^2 - 4) = (x^2 - 3x + 2)(x^2 + 3x + 2)$$
$$= (x^2 - x - 2)(x^2 + x - 2)$$

- ► This does not contradict the Unique Factorisation Theorem because those quadratic factors are not irreducible over ℚ.
- ► In fact, $x^4 5x^2 + 4 = (x 1)(x + 1)(x 2)(x + 2)$.

The maximum number of roots of a polynomial

- THEOREM. A polynomial of degree n ≥ 0 has at most n distinct roots in a field F.
- PROOF (INFORMAL).
 - ▶ If f(x) has a root α , then by the Factor Theorem $f(x) = (x \alpha) \cdot g(x)$, with g(x) of degree n 1.
 - ▶ If f(x) has another root $\beta \neq \alpha$, then $0 = f(\beta) = (\beta \alpha) \cdot g(\beta)$, hence $g(\beta) = 0$, so β is a root of g(x).
 - ► Then by the Factor Theorem $g(x) = (x \beta) \cdot h(x)$, and so $f(x) = (x \alpha) \cdot (x \beta) \cdot h(x)$, with h(x) of degree n 2.
 - ▶ And so on, but in this way we cannot find more than *n* distinct roots. (The procedure may stop before finding *n* distinct roots if some root is repeated, or if we get some factor of *f* which has no roots in *F*.) □

- COROLLARY. A polynomial f(x) of degree < n is uniquely determined by the values it takes on n distinct elements of F.
- PROOF. Suppose we know the values

$$f(b_1) = c_1, \quad f(b_2) = c_2, \quad \dots \quad f(b_n) = c_n,$$
 for some distinct b_1, \dots, b_n .

- Let g(x) be any polynomial of degree < n which also satisfies $g(b_1) = c_1, \quad g(b_2) = c_2, \quad \dots \quad g(b_n) = c_n.$
- Then either h(x) = f(x) g(x) is zero, or deg(h(x)) < n, and $h(b_1) = 0$, $h(b_2) = 0$, ... $h(b_n) = 0$.
- So h(x), which has degree < n, has at least n roots. This contradicts the Theorem, unless h(x) = 0, hence g(x) = f(x).
- EXAMPLE. If deg(f) < 2 (hence of degree 1 or constant), then knowing f(b₁) and f(b₂) for some b₁ ≠ b₂ is sufficient to determine f uniquely. (Note the graph is a straight line.)
 We actually need two values, just f(b₁) would not be enough.

Polynomial interpolation

- The Corollary proves the uniqueness part of the following.
- INTERPOLATION THEOREM. Given distinct $b_1, \ldots, b_n \in F$ (a field as usual), and arbitrary $c_1, \ldots, c_n \in F$, there exists a unique polynomial $f(x) \in F$ of degree < n such that $f(b_1) = c_1, \quad f(b_2) = c_2, \quad \ldots \quad f(b_n) = c_n.$
- A proof of *existence* is the Notes (optional) and includes a method to find f(x). Or proceed directly as follows.
- EXAMPLE. Find the unique polynomial f(x) of degree < 3 such that f(-2) = 7, f(0) = 3, f(1) = 1.
 - ► Set $f(x) = ax^2 + bx + c$. Then 4a 2b + c = 7, c = 3, a + b + c = 1. Solving the system we find a = 0, b = -2, c = 3.
 - ▶ Hence f(x) = -2x + 3, actually of degree 1 (could have been 2).

The Fundamental Theorem of Algebra

- FUNDAMENTAL THEOREM OF ALGEBRA. (Argand, 1806) Every non-constant polynomial in $\mathbb{C}[x]$ has at least one root in \mathbb{C} .
- COROLLARY. The irreducible polynomials in $\mathbb{C}[x]$ are precisely those of degree one.
- COROLLARY. Every non-constant polynomial in $\mathbb{C}[x]$ is a product of polynomials of degree one.
- The fact that a root exists does not mean that there is a formula for finding it (or finding all roots, like for quadratics):
 - formulas for cubics and quartics known since 16th century;
 - no formula exists (using only the four operations, and radicals) for quintics and higher degree (proved by Abel and Ruffini, 1824).
- EXAMPLE. No complex root of $x^5 x 1$ can be be written using rational numbers and applying algebraic operations and radicals.

- EXAMPLE. Consider the polynomial $x^5 x 1 \in \mathbb{R}[x]$.
 - One can find a root numerically, roughly 1.167.
 - Applying Ruffini's Rule we find (approximately!)

$$x^5 - x - 1 \approx (x - 1.167)(x^4 + 1.167x^3 + 1.362x^2 + 1.590x + 0.856).$$

► The factor of degree 4 has at least one root in \mathbb{C} . Continuing in this way one eventually finds the complete complex factorisation $x^5 - x - 1 \approx (x - 1.167) (x - 0.181 + 1.083 i)(x - 0.181 - 1.083 i) \cdot (x + 0.764 + 0.352 i)(x + 0.764 - 0.352 i)$.

► The complete factorisation in $\mathbb{R}[x]$ is $x^5 - x - 1 \approx (x - 1.167)(x^2 - 0.362x + 1.207)(x^2 + 1.529x + 0.709)$.

Complex conjugation

- For a complex number in standard notation $\alpha = s + it$ (so $s, t \in \mathbb{R}$), its conjugate is $\overline{\alpha} = s it$. Hence $\overline{\overline{\alpha}} = \alpha$.
- α is real exactly when $\overline{\alpha}=\alpha$. In fact, its real and imaginary parts are $s=\Re(\alpha)=(\alpha+\overline{\alpha})/2$ and $it=\Im(\alpha)=(\alpha-\overline{\alpha})/2$.
- Because $\alpha \overline{\alpha} = (s + it)(s it) = s^2 + t^2 = |\alpha|^2$, we have

$$\frac{1}{\alpha} = \frac{1}{s + it} = \frac{s - it}{s^2 + t^2} = \frac{\overline{\alpha}}{|\alpha|^2}$$

The main two properties of complex conjugation are

$$\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}, \qquad \overline{\alpha\beta} = \overline{\alpha}\,\overline{\beta}.$$

- They say that conjugation $\alpha \mapsto \overline{\alpha}$ is a *field automorphism* of \mathbb{C} .
- Other properties follow: $\overline{\alpha \beta} = \overline{\alpha} \overline{\beta}$ and $\overline{\alpha/\beta} = \overline{\alpha}/\overline{\beta}$.
- Also, $\overline{\alpha^2} = \overline{\alpha}^2$ and, more generally, $\overline{\alpha^n} = \overline{\alpha}^n$.

Slides Week 5 MTH1001-Algebra 12/15

Complex roots of a polynomial with real coefficients

- LEMMA. If a complex number $\alpha = s + it$ is a root of a polynomial $f(x) \in \mathbb{R}[x]$, then its conjugate $\overline{\alpha} = s it$ is a root as well.
- PROOF. Write $f(x) = a_n x^n + \cdots + a_2 x^2 + a_1 x + a_0$, hence $a_i \in \mathbb{R}$.
 - For any complex number α (a root or not) we have

$$\begin{split} f(\overline{\alpha}) &= a_n \, \overline{\alpha}^{\,n} + \dots + a_2 \, \overline{\alpha}^{\,2} + a_1 \, \overline{\alpha} + a_0 \\ &= a_n \, \overline{\alpha^n} + \dots + a_2 \, \overline{\alpha^2} + a_1 \, \overline{\alpha} + a_0 \quad \text{(because } \overline{\alpha^n} = \overline{\alpha}^{\,n} \text{)} \\ &= \overline{a_n \, \alpha^n} + \dots + \overline{a_2 \, \alpha^2} + \overline{a_1 \, \alpha} + \overline{a_0} \quad \text{(because } \overline{\alpha\beta} = \overline{\alpha} \, \overline{\beta} \text{)} \\ &= \overline{a_n \, \alpha^n} + \dots + a_2 \, \alpha^2 + a_1 \, \alpha + a_0 \quad \text{(because } \overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta} \text{)} \\ &= \overline{f(\alpha)}. \end{split}$$

- ▶ In particular, if $f(\alpha) = 0$, then $f(\overline{\alpha}) = \overline{f(\alpha)} = 0$.
- Hence non-real complex roots of a polynomial with real coefficients come in conjugate pairs, α and $\bar{\alpha}$.

Slides Week 5 MTH1001-Algebra 13/15

Combining pairs of conjugate roots

• For any complex number $\alpha = s + it$, the polynomial

$$(x - \alpha)(x - \overline{\alpha}) = x^2 - (\alpha + \overline{\alpha})x + \alpha\overline{\alpha}$$

has real coefficients, because $\alpha + \overline{\alpha} = 2s$ and $\alpha \overline{\alpha} = s^2 + t^2$.

- If $\alpha \notin \mathbb{R}$ then $(x \alpha)(x \overline{\alpha})$ is irreducible in $\mathbb{R}[x]$. It has negative discriminant: $(\alpha + \overline{\alpha})^2 4\alpha \overline{\alpha} = (\alpha \overline{\alpha})^2 = (2it)^2 = -4t^2 < 0$.
- THEOREM. The irreducible polynomials in $\mathbb{R}[x]$ are those of degree one, and the polynomials $ax^2 + bx + c$ with $b^2 4ac < 0$.
- COROLLARY. Every non-constant polynomial in $\mathbb{R}[x]$ is a product of polynomials of degree one and two.
- Hence $f(x) \in \mathbb{R}[x]$ of odd degree has always at least one real root. (This is actually easier to prove directly, as in Calculus.)

- EXAMPLE. Take $f(x) = 4x^4 + 20x^3 + 30x^2 40x + 26$.
 - ▶ Suppose we know a root -3 + 2i. Then x + 3 2i is a factor of f(x).
 - ▶ Hence we divide f(x) by x + 3 2i using Ruffini's rule:

- $f(x) = (x+3-2i) \cdot [4x^3 + (8+8i)x^2 + (-10-8i)x + (6+4i)].$
- ▶ Then the conjugate -3 2i is a root of the cubic factor. Divide:

- ► So $f(x) = (x+3-2i)(x+3+2i)(4x^2-4x+2)$, and now it is easy:
- f(x) = (x+3-2i)(x+3+2i)(2x-1-i)(2x-1+i) in $\mathbb{C}[x]$.
- $f(x) = (x^2 + 6x + 13)(4x^2 4x + 2)$ in $\mathbb{R}[x]$.