\documentclass{article}

\usepackage{amsmath}

  

\title{Exercise in mathematical formulae in LATEX }

\date{}

  

  

\begin{document}

\maketitle

The solutions of a quadratic equation $a x^{2}+b x+c=0$ are given by the formulae

  

$$

x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}

$$

  

The set $\left\{x\right.$ such that $\left.x^{2} \geq 9\right\}$ is equal to the set $(-\infty ;-3] \cup[3 ; \infty)$.

  

A finite sum of a geometric progression

  

$$

a_{0}+r a_{0}+r^{2} a_{0}+r^{3} a_{0}+\cdots+r^{k} a_{0}

$$

  

with ratio $r \neq 1$ is equal to

  

$$

\sum_{i=0}^{k} r^{i} a_{0}=a_{0}\left(\frac{1-r^{k+1}}{1-r}\right)

$$

  

The infinite sum of a geometric progression

  

$$

a_{0}+r a_{0}+r^{2} a_{0}+r^{3} a_{0}+\cdots

$$

  

with ratio $r$ satisfying $0<r<1$ is equal to

  

$$

\sum_{i=0}^{\infty} r^{i} a_{0}=\frac{a_{0}}{1-r}

$$

  

  

\end{document}