Question 1 §
Question 1a §
f(x)=\sin(3x^4-x^2+2)\
⟹f(−x)=sin(3(−x)4−(−x)2+2):testing the behaviour of the function
⟹f(−x)=sin(3x4−x2+2)=f(x)
∴f(−x)=f(x):the function is even (it displays reflective symmetry).
Question 1b §
g(v)=v4+v2+vv5−v3+1
⟹g(−v)=(−v)4+(−v)2+(−v)(−v)5−(−v)3+1:testing the behaviour of the function
g(−v)=v4+u2−v−v5+v3+1=±g(∓v)
∴g(−v)=±g(∓v):the function is neither odd nor even (asymmetrical).
Question 2 §
Question 2a §
sinhx=2ex−e−x,coshx=2ex+e−x
⟹2sinhxcoshx=2(2ex−e−x2ex+e−x)
⟹2sinhxcoshx=2(ex−e−x)(ex+e−x)
⟹2sinhxcoshx=2e2x−e−2x:by the difference of two squares
⟹2sinhxcoshx=2e2x−e−2x=sinh2x
∴2sinhxcoshx=sinh2x □
Question 2b §
sinhx=2ex−e−x,coshx=2ex+e−x
⟹coshxcoshy+sinhxsiny=(2ex+e−x2ey+e−y)+(2ex−e−x2ey−e−y)
⟹coshxcoshy+sinhxsiny=4(ex+e−x)(ey+e−y)+(ex−e−x)(ey−e−y)
⟹coshxcoshy+sinhxsiny=4(ex+y+ex−y+ey−x+e−x−y)+(ex+y−ex−y−ey−x+e−x−y)
⟹coshxcoshy+sinhxsiny=42ex+y+2e−(x+y)
⟹coshxcoshy+sinhxsiny=2e(x+y)+e−(x+y)=cosh(x+y)
∴coshxcoshy+sinhxsiny=cosh(x+y) □
Question 3 §
z1=3+i,z2=7−i
Question 3a §
z1z2=(3+i)(7−i)
⟹z1z2=22+4i
Question 3b §
∣z2∣∣z1∣=(7)2+(−1)2(3)2+(1)2
⟹∣z2∣∣z1∣=5010=5210
Question 3c §
z2z1=7−i3+i⋅7+i7+i
⟹z2z1=5020+10i=52+i
⟹z2z1=52+51i
Question 3d §
z1ˉz2ˉ=3−i7+i⋅3+i3+i
⟹z1ˉz2ˉ=1020+10i=2+i
Question 4 §
Question 4a §
22−22i⟹(r,θ)=((22)2+(−22)2,tan−1(22−22))
⟹(r,θ)=(4,−4π):0≤θ<2π
∴(r,θ)=(4,47π)
Calculus Coursework 1 2023-10-26 16.34.17.excalidraw
Above (in red) is plotted the complex number 22−22i, which in polar form is represented as 4(cos47π+isin47π).
Question 4b §
−23+2i⟹(r,θ)=((−23)2+(2)2,tan−1(−232))
⟹(r,θ)=(4,−6π):0≤θ<2π
∴(r,θ)=(4,611π), however this is in the wrong direction
⟹(r,θ)=(4,65π)
Calculus Coursework 1 2023-10-26 16.36.15.excalidraw
Above is plotted the complex number −23+2i, which in polar form is represented as 4(cos65π+isin65π).
Question 5 §
Question 5a §
z3=4(−1+3i)⟹z=431(−1+3i)31
First, working out the angle of z, which would be the same as the angle of any multiple of z, hence:
∠z=3∠(−1+3i)+2nπ=3tan−1(−13)+2nπ=3−3π+2nπ=9(6n−1)π
⟹∠z=9(6n−1)π=θ,
Next, working out the modulus of z,
∣z∣=431⋅∣−1+3i∣=431⋅(−1)2+(3)2=431⋅2
⟹∣z∣=232⋅2=235=r.
Combining this information gives us the polar form of z:
∴z=(r,θ)=(235,9(6n−1)π):n∈z
⟹z=(235,95π),(235,911π),(235,917π)
Which we can then convert into exponential form:
∴z=235⋅e95π,235⋅e911π,235⋅e917π
Question 5b §
z4=i1⋅−i−i=−i⟹z=(−i)41
First, working out the angle of z:
∠z=4∠(−i)+2nπ=423π+2nπ=8(3+4n)π
⟹∠z=8(3+4n)π=θ,
Next, working out the modulus of z,
Combining this information gives us the polar form of z:
∴z=(r,θ)=(1,8(3+4n)π):n∈z
⟹z=(1,83π),(1,87π),(1,811π),(1,815π)
Which we can then convert into exponential form:
∴z=e83π,e87π,e811π,e815π
Question 6 §
Question 6a §
x→3limx2+x−12x−3=00:undefined, use L’hoˆptial’s Rule - differentiate
⟹x→3lim2x+11=71
Question 6b §
v→∞lim9v4+2v3−51−v2+3v3−4v4=v→∞lim(9v4+2v3−51−v2+3v3−4v4⋅v−4v−4)
=v→∞lim9+2v−1−5v−4v−4−v−2+3v−1−4=−94
Question 6c §
y→0limy2eay−1−ay=00:undefined, use L’hoˆptial’s Rule - differentiate
⟹y→0lim2yaeay−y=0a:undefined, use L’hoˆptial’s Rule - differentiate
⟹y→0lim2a2eay−1=2a2−1
Question 6d §
x→1lim(lnx1−x−11)=x→1lim((lnx)(x−1)(x−1)−(lnx))=x→1lim(xlnx−lnxx−1−lnx)=00
:undefined, use L’hoˆptial’s Rule - differentiate using product rule/chain rule
⟹x→1lim(lnx+1−x11−x1)=00:undefined, use L’hoˆptial’s Rule - differentiate
⟹x→1lim(x−2+x−1x−2)=21