Question 1 §
Question 1a §
⟹LHS=[L]2+[L2],RHS=[L]2
⟹LHS=RHS∴complete equation
Question 1b §
LHS=yvx2,RHS=(65km⋅h−3)t
⟹LHS=[L]2[T]−2[L]−1,RHS=[L][T]−3[T]
Question 1c §
LHS=y−21vx3,RHS=(12cm)t23
⟹LHS=[L][L]3[T]−3,RHS=[L][T]3
⟹LHS=RHS∴incomplete equation
Question 1d §
⟹LHS=[L][T]−1[L]−1[T],RHS=0
⟹LHS=RHS∴complete equation
Question 1e §
LHS=1 light year,RHS=(1.17 rad)x
⟹LHS=[L],RHS=[L]
⟹LHS=RHS∴complete equation
Question 1f §
LHS=θ2vx2,RHS=t2y2
⟹LHS=[L]2[T]−2,RHS=[L]2[T]−2
⟹LHS=RHS∴complete equation
Question 2 §
Given that vx(t=0)=0 and x(t=0)=0,
Question 2a §
ax(t)=a0
⟹vx(t)=∫ax(t)dt=a0t+c1:c1=0⟹vx(t)=a0t
⟹x(t)=∫vx(t)dt=21a0t2+c2:c2=0⟹x(t)=21a0t2
∴the acceleration is constant, so it probably describes freefall or something similar.
---
title:
xLabel:
yLabel:
bounds: [-10,10,-10,10]
disableZoom: false
grid: false
---
y=2
Question 2b §
ax(t)=γt
⟹vx(t)=∫ax(t)dt=21γt2+c1:c1=0⟹vx(t)=21γt2
⟹x(t)=∫vx(t)dt=61γt3+c2:c2=0⟹x(t)=61γt3
∴the acceleration is linearly increasing, but I don’t know what this means.
---
title:
xLabel:
yLabel:
bounds: [-10,10,-10,10]
disableZoom: false
grid: false
---
y=2x
Question 2c (integrated incorrectly, tau should be multiplied because it’s dividing a quotient) §
ax(t)=τv∞e−τt
⟹vx(t)=∫ax(t)dt=−τ2v∞e−τt+c1:c1=τv∞⟹vx(t)=τv∞−τv∞e−τt
⟹x(t)=∫vx(t)dt=τv∞t+τ2v∞e−τt+c2:c2=−τv∞
⟹x(t)=τv∞t+τ2v∞e−τt−τv∞
∴I have no idea what physical conditions this could be under.
Question 2d §
Note that this follows a different, safer method
ax(t)=a0cos(ωt)
⟹vx(t)=vx(0)+∫0tax(t′)dt′=[ωa0sin(ωt′)]0t=ωa0sin(ωt)
⟹x(t)=x(0)+∫0tvx(t)dt=[−ω2a0cos(ωt′)]0t=ω2a0−ω2a0cos(ωt)
∴I have no idea what physical conditions this could be under.
Question 3 §
Question 3a §
r(t)=[(10m⋅s−1)t]i^+[(−2.5m⋅s−2)t2]j^
⟹v(t)=[10m⋅s−1]i^+[(−5m⋅s−2)t]j^
⟹a(t)=[0m⋅s−1]i^+[−5m⋅s−2]j^
Question 3b §
r(t)=[Rcos(ωt)]i^+[Rsin(ωt)]j^
⟹v(t)=[−Rωsin(ωt)]i^+[Rωcos(ωt)]j^
⟹a(t)=[−Rω2cos(ωt)]i^+[−Rω2sin(ωt)]j^
Question 3c §
r(t)=[R(ωt−sin(ωt))]i^+[R(ωt−cos(ωt))]j^
⟹v(t)=[R(ω−ωcos(ωt))]i^+[R(ω+ωsin(ωt))]j^
⟹a(t)=[ω2Rsin(ωt)]i^+[ω2Rcos(ωt)]j^
Question 4 §
Question 4a §
vavg=ΔtΔs=tf−tisf−si
Question 4b §
Given the aforementioned definition that vavg=ΔtΔs, we can say that:
vx,avg=t2−t1x2−x1
⟹vx,avg=t2−t11⋅xavg
⟹vx,avg=t2−t11⋅∫t1t2vx(t)dt
Question 4c §
Given that acceleration is constant, we can say that
vx(t)=vx0+a(t−t0)
Thus we can calculate the velocity at t1 and t2:
(1)vx(t1)=vx0+a(t1−t0)
(2)vx(t2)=vx0+a(t2−t0)
Now, integrating vx(t) over [t1,t2]:
∫t1t2vx(t)dt=∫t1t2(vx0+a(t−t0))dt
⟹∫t1t2vx(t)dt=vx0(t2−t1)+21a((t2−t0)2−(t1−t0)2)
Then we can simplify the equation by using the equations (1),(2) from earlier:
⟹∫t1t2vx(t)dt=21(vx(t1)+vx(t2))(t2−t1)
⟹t2−t11∫t1t2vx(t)dt=21(vx(t1)+vx(t2))
Then by using the equation derived in part (b):
⟹vx,avg=21(vx(t1)+vx(t2)) □